

A

3rdl.

DAB HAND GU IDE

MARK
BURGESS

C - A DABHAND GIBDE

C: A Dabhand Guide

© Mark Burgess 1988
ISBN 1-870336-16-X
Third edition May 1992

Editor: Shona Mcisaac.
Typesetting: Clare Atherton
Cover: Clare Atherton.
Internal Illustrations: Clare Atherton and David
Price

Within this book the letters BBC refer to the British
Broadcasting Corporation . The terms BBC micro,
Master 128 and Master Compact refer to the
computers manufactured by Acorn Computers Ltd
under licence from the BBC.

All rights reserved. No part of this book (except
brief passages quoted for critical purposes) or any of
the computer programs to which it relates may be
reproduced or translated in any form or by any
means mechanical electronic or otherwise without
the prior written consent of the copyright holder.

Disclaimer: Because neither Dabs Press nor the
author have any control over the way the material in
this book and accompanying programs disc is used,
no warranty is given or should be implied as to the
suitability of the advice or programs for any given
application. No liability can be accepted for any
consequential loss or damage, however caused,
arising as a result of using the programs or advice
printed in this book or on the accompanying
programs disc.

Published by Dabs Press,22 Warwick Street,
Prestwich, Manchester M25 7HN. Tel: 061-773
8632.

Printed and bound in Great Britain by A.Wheaton
& Co., Ltd, Exeter, Devon, a member of the BPCC
Group.

Contents
Preface 13
Introduction 15

1 : Basic Ideas 21
What to do with a Compiler 21
The Compiler 23
Errors 24
Use of Upper and Lower Case 26
Declarations 27
Questions 27

2 : Reserved Words 29
Words with Special Significance 29
The printf Function 32

3 : Rival Languages 35
A Comparison with Pascal and BASIC 35
Questions 37

4: Systems & Environments 39
Where is a C Program Born? 39
Files and Devices 40

C - A DABHAND GUIDE

Filename Conventions 41
UnixC 42
Command Languages and Consoles 45
Editors 46
Questions 47

5 : Libraries 49
Plug in C Expansions and Header Files 49
Questions 52

6 : Programming Style 53
The Shape of Programs to Come 53

7 : Form of a C Program 55
What Goes into a C Program 55
Questions 60

8: Comments 61
Annotated Programs 61
Question 63

9 : Functions 65
Making Black Boxes 65
Solving Problems and Getting Results 65
Functions with Values 69
Breaking Out Early 71
The Exit Function 72
Functions and Types 72
Questions 73

10 : Types & Declarations 75
Storing Data 75
Declarations 78
Where to Declare Things 79
Declaration and Initialisation 80
Individual Types 81
Characters:
Integers 83
Floating Point Types 84

·Choosing Variables 85
Assigning Variables 85
Types and the Cast Operator 86
Storage Classes:
Register, Static and Extern 89
Functions Types and Declarations 90

Redundant Keywords
Questions

91
92

11: Parameters & Functions (Communication) 93
Ways In and Out of Functions 93
Declaring Parameters 94
Value Parameters 95
Functions as Actual Parameters 100
Variable Parameters 104
Questions 108

12 : Scope: Local & Global 109
Where a Program's Fingers can't Reach 109
Global Variables llO
Local Variables llO
Intership Communication:Parameters ll3
Style Note ll4
Advanced Scope and Style ll5
Questions ll6

13 : The Pre-processor 117
Making Programming Versatile ll7
Macro Functions 120
Using Macros with Parameters 121
Note About #include 123
Other Pre-processor Commands 123
Questions 125

14 : Pointers 127
Making Maps of Data 127
&and* 129
Uses for Pointers 131
Pointers and Initialisation 132
Types, Casts and Pointers 136
Questions 137

15 : Standard Output & Input 139
Talking to the User 139
The printfFunction 141
Formatting with printf 145
Special Control Characters 148
Questions 148
The scanfFunction 149
Conversion Characters 150
How Does scanf 'See' the Input? 151

CONTENTS

C - A DABHAND GUIDE

First Account of scanf
The Dangerous Function
Keeping scanfUnder Control
Examples
Matching Without Assigning
Formal Definition of scanf
Points to Remember About scanf
Questions
Low-Level Input/Output
getchar and putchar
gets and puts
Questions

152
153
154
155
159
161
162
163
163
163
165
166

16 : Assignments, Expressions and Operators 167
Thinking in 'C' 167
Expressions and Values 168
Brackets and Priority 171
Unary Operator Precedence 172
Special Assignment Operators,++ and - 173
More Special Assignments 174
The Cast Operator 177
Expressions and Types 177
Comparisons and Logic 178
Summary of Operators and Precedence 180
Questions 181

17: Decisions 183
Testing and Branching 183
~ 185
if ... else 191
Nested ifs and Logic 193
Stringing Together if ... else 197
switch : Integers and Characters 200

18 : Loops 207
Controlling Repetetive Processes 207
while 208
do .. . while 213
for 217
The Flexible 'for' Loop 221
Quitting Loops and Hurrying Them Up! 223
Nested Loops 225
Questions 227

CONTENTS

19 : Arrays 229
Rows and Grids of Storage 229
Why Use Arrays? 230
Limits and the Dimensions of an Array 233
Arrays and 'for' Loops 234
Arrays of More than One Dimension 239
Arrays and Nested Loops 241
Initialising Arrays 251
Arrays and Pointers 252
Arrays as Parameters 254
Questions 255

20 : Strings 257
Communication with Strings and Arrays 257
Conventions and Declarations 258
Strings, Arrays and Pointers 258
Arrays of Strings 262
Strings from the User 266
Handling Strings 270
String Input/Output 275
Questions 278

21 : Functions & Macros 279
Checking Character Types 279
Character Identification 280
String Manipulation 285
Mathematical Functions 290
Mathematical Errors 295
Questions 300

22 : Hidden Operators 301
Tidying Up Programs 301
Extended and Hidden = 303
Hidden++/- 306.
Arrays, Strings and Hidden Operators 307
Cautions About Style 310
Questions 314

23 : Advanced Data Types 315
Special Constant Expressions 316
FILE 317
enum 318
Suggested Uses for enum 323
void 325
volatile 326

C - A DAB HAND GUIDE

con st
struct
union
typedef
Questions

24 : Low-level Operations
Bits and Bytes
Bit Patterns
Flags, Registers and Messages
Bit Operators and Assignments
The Meaning of Bit Operators
Shift Operations
Truth Tables and Masking
COMPLEMENT etc

Questions

25 : Files and Devices
Advanced Input/Output
Files Generally
File Positions
High-level File Handling Functions
Opening Files
Closing a File
£Printf
fscanf
Skipfilegarb?
Single Character I/O
Switching Output Files: Printer Output
Filing Errors
Other Facilities for High-level Files
Low-level Filing Operations
File Handles
open, close
read, write, creat etc
Questions

26 : Structures & Unions
Grouping Data
Organisation : Black Box Data
struct
Declarations
Scope
Using Structures
Arrays of Structures
Structures of Structures

326
327
328
328
329

331
331
332
333
334
335
336
338
338
344

345
345
347
347
348
349
352
352
353
354
355
359
366
366
370
372
372
374
388

389
389
390
391
392
394
395
397
401

Pointers to Structures 403
Pre-initialising Static Structures 407
Creating Memory - Dynamical Struct Types 408
Union 411
Declarations 411
Using Unions 412
Questions 413

27 : Data Structures 415
Data Structure Diagrams 415
The Tools: Structures, Pointers

and Dynamic Memory 419
Programme for Building Data Structures 421
Setting up a Data Structure 422
Example Structures 424
Questions 426

28 : Recursion 429
The Da:mon Which Swallowed Its Tail 429
Functions and The Stack 432
Levels and Wells 434
Tame Recursion and Self-Similarity 435
Simple Example Without a Data Structure 436
Simple Example With a Data Structure 438
Advantages and Disadvantages of Recursion 441
Recursion and Global Variables 442
Questions 443

29 : Toolkits 445

30 : Example Programs 457
Statistical Data Handler 457
Variable Cross Referencer 482

31 : Errors And Debugging 503
Mistakes! 503
Compiler Trapable Errors 504
Errors not Trapable by a Compiler - 507
Runtime Errors 507
Tracing Errors 514
Questions 517

32 : Advanced Features 519
Making new commands with C 519
_main() and main() 520

CONTENTS

Altering _main 525 -----

C - A DABHAND GIBDE

Pointers to Functions 525
Calling a Function by Pointer 527

33 : Summary of C 533

34 : The Amiga 545
System Peculiarities 545
Running C in the CLI 547
Special Features of the Amiga 548
Resources 549
PRT: SER: PAR: CON: RAW: 550
Graphics 554

35 : The Atari ST 563

36 : The Archimedes 575

37: PCs 587
Running C 587
MS-DOS and Facilities 589
Friendly Text I/O 589
Sound 592
MS-DOS Support 593
Child Processes 594
Program Style 596

38 : BBC Master 599

39 : System Programming Under Unix 609
Peculiarities 610
sprintf () 610
Writing Large Array Applications 611
Signals and Dremons 612
Wild cards 626

Appendices
A : Style Notes 639
B : Variations in Implementation 643
C : Character Base Conversions 647
D : Answers to Questions 653
E : The Programs Discs 665
F : Guide to Dabhand Guides 669

Glossary of Terms 683

Index 693

•

CONTENTS

List of Figures

I.l. High-level and low-level instructions 16
I.2. Computer highs and lows 18
I.3. Compiling the black boxes 18
1.1. The stages of compilation 22
7 .1. C programs are built from functions 56
10.1. Variables are storage places 77
10.2. The cast operator in action 87
11.1. Value parameters in action 97
11.2. Passing variables 105
12.1. Nesting 111
13.1. The pre-processor 120
14.1. Pointers and variables 131
14.2. Pointers: Example 135
15.1. Routes to and from a C program. 141
15.2. scanf Example 1 155
15.3. scanfExample 2 157
17.1. If some condition is satisfied ... 186
17.2. Which route - if ... else selects 192
17.3. Switch 201
18.1. The structure of the while command 208
18.2. The do ... while command structure 214
18.3. The structure ofa for lop 218
18.4. Nested loops 225
20.1. Strings from the user 269
25.1. Files to and from a program 346
26.1. The program is a "society" offunctions ... 391
27.1. A conceptual diagram 417
27.2. A more suggestive diagram 418
27.3. Connecting data with pointers 423
27.4. Linked lists 424
27.5. A binary tree has two pointers 426
28.1. Recursion: Things inside themselves 431
28 .2. A stack 433
30.1. STAT.C program 460
30.2. CREF.C program 482

•

C - A DAB HAND GUIDE

•

11

Preface
Preface to Third Edition

In the third edition of this book, I have taken the

opportunity to revise parts of the manuscript which

were less than clear in the earlier editions. In

particular, some confusion could have arisen from

the injudicious use of the word 'library' where

'header file' would have been more apt. The

typographical errors which crept into the earlier

editions have also been corrected.

The increasing use of UNIX based systems has

prompted me to mention some UNIX specific

details. Once again, I have chosen not to apply the

new ANSI method for prototyping functions to the

programs within . I believe that, in an introductory

book, function prototypes serve only to confuse the

syntax of a program. Also, these features do not yet

exist on many versions of UNIX. The details about - .

C - A DABHAND GUIDE

II

ANSI prototyping can be found in the second

edition of Kernighan and Ritchie's book: C the

programming language (Prentice Hall 1988).

I would like to thank Jerry Hagon, Andy Beavis and

John Allen for their occasional hints about UNIX.

Also Peter Lomas and Judith Hunter for (what has

seemed like frequent) assistance with system specific

difficulties, using the computing facilities at

Newcastle. Thanks also to Knut Borge and Hans

Petter Holen for valuable help in Oslo.

Mark Burgess October, 1992

II

Introduction

What is C?

What is it for?

Why is it Special?
Any kind of object, which is sufficiently complicated,

can be thought of as having levels of detail. This

means our perception of that object depends upon

how closely we look at it. The amount of detail

which can be seen in a thing depends upon how

closely the object is looked at. A computer falls

easily into the category of highly complex objects

and it ca n be thought of as working at many

different levels. The terms low-level and high-level are

often used to describe these onion-layers of

complexity in computers.

C -A DABHAND GUIDE

•

Low-level is perhaps the easiest to understand: it

describes a level of the computer which is buried

down among the working parts of the machine. The

low-level is the level at which the computer seems

most primitive and machine-like. A higher level

describes the same object, but with the detail left

out. One might imagine stepping back from the

complexity of the machine-level pieces and grouping

together parts which work together, then covering

up all the details. For instance in a car, a group of

nuts, bolts and pistons can be grouped together to

make up a new basic object - an engine. The engine

is just a black box, who cares what is inside? The

computer is a group of 'black boxes' which are

thought of as being the basic components of the

machine.

C is called a high-level, compiler language. The aim

of any high-level computer language is to provide an

easy and natural way of giving a programme of

instructions to a computer. The language of the raw

computer is a stream of number patterns called

machine code. As you might expect, the action which

results from a single machine code instruction is very

primitive and many thousands of these are required

to make up a program which does anything very

useful. It is therefore the job of a high-level

language to provide a new set of 'black box'

High Level

metal
alloy

Low Level

ENGINE

spark
plugs

Levels of Complexity in an Engine .

At the high level,
an engine is just a black box.

Figure I.1. High-level R-nd Low-level instructions.

instructions, which can be given to the computer

without needing to see what happens inside them -

and it is the job of a compiler to fill in the details of

these 'black boxes' so that the final product is a

sequence of instructions in the language of the

computer.

C is one of a large number of high-level languages

which can be used for general purpose

programming, that is, anything from writing small

programs for personal amusement to commercial

software. It is unusual in several ways.

High-level languages are often criticised by machine

code programmers because they shield the user from

the working details of the computer, with their black

box approach, to such an extent that the languages

become inflexible: in other words, they do not allow

the programmer to use all the facilities which the

machine has to offer. On the other hand, C is

designed to give access to any level of the machine

down to raw machine code. Because of this, it is

arguably the most flexible of all the common high

level languages.

INfRODUCTION

•

C - A DABHAND GUIDE

•

COMPUTER

I
I I I

keyboard CPU monitor

• •

I

I I

ULA's memory ALU

I

I I I

• • chip 23 chip 24 • • • •
Figure 1.2. Computer highs and lows.

Figure 1.3. Compiling the black boxes.

A very important role of high-level languages, which

is often totally ignored, is that programs are a means

of communication between human beings. They are

not merely monologues to the computer, but a way

of expressing ideas and a way of solving problems.

Thus, the C language has been equipped with some

nice features which allow programs to be organised

in an easy and logical way. This is vitally important

when writing lengthy programs, because sometimes

whole problems are manageable only with a clear

organisation and program structure. C allows

meaningful variable and function names to be used

in programs without any loss of efficiency. It gives a

complete freedom of style - it has a set of very

flexible loop constructions (for example: for, while,

do) and neat ways of making decisions, providing an

excellent basis for controlling the flow of programs.

Another unusual feature of C is the way it can

express ideas very concisely. C gives the programmer

the apparatus to build neat and compact programs.

It does this by allowing the freedom to do many

things which are just plain illegal in many other

languages! At first, this sounds either like a great

bonus for programmers or something a little

suspect. Conciseness can be a mixed blessing - the

aim is to try to seek a balance between the often

conflicting interests of program readability and their

conciseness. Because this side of programming is so

often presumed to be understood, this book

attempts to illustrate how this can be done at the

same time as keeping the best of both features .

C allows activities which are frankly illegal in other

languages. This is not a defect but a very powerful

feature of the language which, when used with

caution, opens up enormous possibilities . It does

mean, however, that there are aspects of C which

tend to run away with themselves unless some care is

taken, so there is an extra responsibility on the

programmer to write careful and thoughtful

programs. The reward for taking this care is very fast

and efficient programs.

C tries to make the best of a computer by linking as

closely as possible to the local environment. It is no

longer necessary to have to put up with hopelessly

INTRODUCTION

•

C - A DABHAND GUIDE

•

inadequate input/output facilities (a legacy of the

timesharing/mainframe computer era). You can

utilise everything that a computer has to offer.

Above all, it is flexible. C is a very powerful

language with the scope to write neat and efficient

programs. Clearly no language can guarantee

intrinsically good programs, there is always a

responsibility on the programmer to ensure that a

program is neat, logical and well organised, but it

can give a framework in which it is easy to do so.

This book aims to convey some of the C philosophy

in a practical way, and to provide a comprehensive

introduction to the language through examples and

by sticking to a strict structuring scheme.

Hopefully, you will get a flavour of the kind of

programming which C encourages .

II

a Basic Ideas

What to do with a Compiler
Using a compiler language is not the same as using

an interpreted language like BASIC. It differs from

interpreted languages in a number of ways. To begin

with, a C program has to be created in two stages.

These stages are as follows:

l) First, the program is written in the form of a

number of text files using a screen editor. This

form of the program is called the source

program or source file. It is not possible to

execute this file directly.

2) The completed source file is passed to a

compiler. A compiler is a program which

generates a new file containing a machine code

translation of the source text. This file is called

·-

II

C - A DABHAND GUIDE

•

an object file or executable file. The executable

file is said to have been compiled from the source

text.

A major difference between compiler languages and

BASIC-like languages is that compiler languages do

not contain their own editor, nor do they have

words like RUN with which to execute a finished

program. A programmer uses a screen editor to

create the words of a program, or program text, and

runs the final program in its object code form in some

way. This depends upon the operating system of the

computer. It is normal just to type the name of the

executable file.

Furthermore, C is different from many compiler

languages in that it has something called a pre­
processor. This is a tool which helps to keep

programs tidy and readable, by allowing irrelevant

details to be hidden away in dark places. A

programmer can define his/her own words for

making things simpler, and let external files be

incorporated into programs as header files which

expand the vocabulary of C .

C Source Program
file.C

Libraries

v /
COMPILER ~ERROR S?

v

Machine Code ...
ERROR Executable Program S?

file . X

Figure 1.1. The stages of compilation.

The Compiler
A C program is made by running a program called a

compiler, which takes a typed source program and

converts it into something that the computer can

execute.

It is common for a compiler program to come in the

form of two or three separate programs or phases.

(Sometimes the first two phases are amalgamated

into one.) When this happens, each of these phases

has to be executed, one after the other, in the

correct order. The reason for taking this rather

awkward approach is for portability of the compiler.

For some programmers this approach also provides a

1 - INTRODUCTION

C - A DABHAND GUIDE

II

more flexible way of compiling a program which is

split into many files, since he/she then need only re­

compile a single file when making alterations.

The three phases will most likely work in the

following way:

1) Phase one will scan a source program and

generate a compact code file known as a quad

file. Quadruples, as they are called, are a

compact intermediate code which helps to

simplify the grammar of the language for

subsequent phases. This phase has to be carried

out for every text file which makes up a

program.

2) Phase two will convert the quad file into a file of

object code (though this is probably not

executable). A separate object file is needed for

each separate source file the programmer has

used, so every file which has been created from

phase one would have to be passed through this

phase too.

3) Phase three is a linker. This program appends

the object file with standard library code so that

the code is complete or 'stand alone'. A C

compiler linker suffers from the slightly arduous

task of linking together all the functions in the

C program. Even at this stage, the compiler can

fail if it finds that it has a reference to a function

which does not exist.

To avoid the irritation of typing three - often

cumbersome - separate commands, it is usual to

create a 'batch file' or 'exec file' to execute a
compiler. This is a file of commands which are

directed towards the operating system's interpreter.

It is nothing to do with the program itself. The

details of how to create such a file depend heavily

upon the operating system and the computer under

which the compiler runs, but the end result is that

the whole compiler can be run from start to finish

with a single command, which might look

something like:

execute Ccompi1er fi1ename

or:

ex cc fi1ename

or:

cc fi1ename

or whatever ... This file has probably been created

for you, ready for use.

Errors
Errors are mistakes which programmers make .

Compiler languages are not interactive in the sense

that they do not usually register program errors

while they are running, unlike BASIC which gives an

error message and a line number when something

goes wrong . There are two kinds of error in a

compiler language. They are syntax errors and there

are logical errors.

Errors in the syntax, or word structure, of a program

are caught at compilation time by the compiler

program and they are all listed in one go, with the

line number in the text file at which the error

occurred, and a message to say what was wrong. A

program with syntax errors will cause a compiler

program to abort its generation of machine code, so

that no obviously incorrect program can be executed

by the computer. An incorrect program can cause a

machine to 'crash' or go out of control. A compiler

1 - INfRODUCTION

•

C - A DABHAND GUIDE

•

will usually not stop at the first error it encounters,

but will attempt to continue checking the syntax of a

program right to the last line before aborting. It is

common to submit a program for compilation only

to receive a long and ungratifying list of errors from

the compiler!

A shock which comes to everyone using a compiler

for the first time is that, now and then, a single error

will throw the compiler off course and result in a

huge and confusing list of non-existent errors,

following the true culprit. The situation looks much

worse than it really is. This problem usually cures

itself with experience, but it can be very

disheartening at first.

If the compilation of a program is successful, then a

new file (whose name depends upon the compiler) is

created. This file will contain machine code which

can be executed according to the rules of the

computer's operating system.

The second type of error is far more serious, ie,

program logic errors. These often can't be trapped

by the compiler. The sort of errors which survive the

scrutiny of the compiler are often fatal and cause the

machine code program to do one of two things:

1) Terminate in some system-dependent way. This

may be a detailed error message or simply a brief

indication tha~ something is wrong, depending

on the particular compiler and the particular

operating system of a machine.

2) Crash the system, ie, run wild and jam the

normal operation of the computer.

When a programmer wants to make alterations and

corrections to a C program, these have to be made

in the source text file itself using a screen editor, so

often the entire program must be recompiled when

making an alteration.

Use of Upper and Lower

Case
One of the reasons why the compiler can fail to

produce the executable file for a program is that a

function name has been mistyped, even through the

careless use of upper and lower case characters. An

important feature of the C language, is that it is

'case dependent'. The compiler distinguishes

between small letters and capital letters in contrast

to languages such as Pascal and some versions of

BASIC, for instance . This is a potential source of

quite trivial errors which can be very difficult to

spot. If the case is wrongly typed, the compiler will

complain and not produce an executable program.

C is designed around lower case commands.

Declarations
The vast majority of compiler languages require the

programmer to make a list of the names and types of

all variables which are going to be used in a program

and information about where they are going to be

used. This is called 'declaring' variables, and it is

definitely a requirement of C. In fact it is not as bad

as it sounds, the list is spread around the program

and declaring variables quickly becomes second

nature. It serves two purposes: first, it provides the

compiler with a definitive list of the variables,

enabling it to cross check typing errors and second,

l - INTRODUCTION

C - A DABHAND GUIDE

•

it informs the compiler how much space must be

reserved for each variable at execution time, when

the program is finally run.Declaring variables also

enables you to have many different variables with the

same name, either in different (independent) parts of

the program, or even in the same part. C supports a

great variety of variable types (variables which hold

different kinds of data) and allows one type to be

converted into another, so the type of a variable is of

great importance to the compiler. Failing to declare

a variable at all, or declaring it to be the wrong type,

will result in a compilation error.

Questions:
1) What is a compiler?

2) How is a C program run?

3) How is a C program usually compiled?

4) Are upper and lower case equivalent in C?

5) What are the two different kinds of error which

can be in a program?

II

El Reserved Words

Words with Special
Significance
The basic instructions of C are built up using the set

of words listed below. These words may not be used

in just any way; C demands that they be used only

for giving commands or making statements . They

must not, for instance, be used to represent variables

in a program and any attempt to do so would result

in a compilation error. The words are listed mainly

in alphabetical order so that they can be referred to

easily. C requires all of these words to be in lower

case. However, this does mean that, typed in upper

case, the reserved words could be used as variable

names, but this is not recommended.

C - A DABHAND GUIDE

•

The lower case 'd' after the word means that the

word is used as part of a declaration. This will be

discussed later.

auto
break

case
char
continue
default

do
double
else
entry

extern
float
for
goto
if

d

d

d

(This word was reserved
for the future.)*
d
d

int d
long d
register d
return
short d
sizeof
static d
struct d
switch
typedef d
union d
unsigned d
while

* On older compilers this may still be so, but 'entry'

is no longer reserved

Also in some implementations:

en um d
void d
const d
signed d
volatile d

The last five words are not found in all

implementations of C, but are being accepted in

newer compilers. There is also, at the time of

writing, a draft proposal for an ANSI standard

version of C. These extra words are part of that

proposal. They are covered in this book for

completeness and for future accuracy. However,

they are not assumed to exist in the reader's

compiler. If you have an ANSI C compiler, the

programs in this book will still work, so don't switch

om
The set of reserved words above are used to build up

the basic instructions of C. There doesn't appear to

be many of these words, which is misleading. The

reason for the small number of reserved words in C

is that most of the facilities which C offers

programmers are included in the form of add on

libraries, added on to programs like plug-in

expansion units. They are not strictly a part of the C

language itself, though you never find a version of C

without them! The contents of these libraries are

covered in a later section in some detail, but it is

worth pointing out here that when certain libraries

have been included, new functions will have been

defined implicitly. This means that the size of the

language suddenly grows and that there will be

further restrictions on choosing the names of

functions and so on. If a variable, function or macro

name has already been defined as something else, or

2 - RESERVED WORDS

•

C - A DABHAND GUIDE

•

it is a reserved word, the compiler will signal an

error or a warning that it has already been used.

The print function
One invaluable function which is provided by the

standard input/output library is called printf, or

print-formatted. It is rather difficult to program

without this function and it provides an extremely

versatile way of printing text to a screen . The

simplest way of using it, is to type in the following

line:

printf (" . . some string ... ");

Generally, variables can be inserted by using a

control sequence inside the quotes and listing the

variables after the string which then get inserted into

the string in place of the control sequence. To print

out an integer, o/od is used as a control sequence, as

follows:

printf ("Integer= %d",sorneinteger);

The variable 'someinteger' is then printed instead of

o/od . The printf function is described in full detail in

the relevant chapter, but it will crop up in places

from time to time. The example program below

(listing 2.1) is a complete program. Try typing it in

and compiling it .

2 - RESERVED WORDS

Listing 2.1. A short poem.

/***/

/*Short Poem */

/***/

#include <stdio.h>

/***/

main () /* Poem */

printf ("Astronomy is %dderful \n",l);

printf ("And interesting %d \n",2);

printf ("The ear%d volves around the sun \n",3);

printf ("And makes a year %d you \n",4);

printf ("The moon affects the sur %d heard \n",5);

printf ("By law of phy%d great \n",6);

printf ("It %d when the stars so bright \n",7);

printf ("Do nightly scintill%d \n",8);

printf ("If watchful providence be%d \n",9);

printf ("With good intentions fraught \n");

printf ("Should not keep up her watch divine \n");

printf ("We soon should come to %d \n",0);

•

C -A DABHAND GUIDE

•

Output of listing 2.1

Astronomy is lderful

And interesting 2

The ear3 volves around the sun

And makes a year 4 you

The moon affects the sur 5 heard

By law of phy6 great

It 7 when the stars so bright

Do nightly scintill8

If watchful providence be9

With good intentions fraught

Should not keep up her watch divine

We soon should come to 0

11

II Rival
Languages

A Comparison with Pascal

and BASIC
If you are already familiar with Pascal (Algol...etc) or

BBC BASIC, the following table gives an extremely

rough-and-ready indication of how the main words

and symbols of the three languages relate to each

other. Later chapters will cover detailed descriptions

of C vocabulary.
C Pascal BASIC

= .- =
-- = =
*,/ *,/ *,/
/,% div, mod DIV, MOD
printf (" ... "); writeln (' .. .'); PRINT" ... "

write(' .. .');

•

C - A DABHAND GUIDE

c Pascal BASIC
scanf (" ••• ",&a); readln (a); INPUT a

read (a)

for (x = .. ; ... ;) for x := ... to FOR x = ...
{ begin

} end; NEXT x

while(..•) while ••• do N/A
{ begin
} end;

do N/A N/A
{

}

while(...);

N/A repeat REPEAT
until(•••) UNTIL •••

if(••) •• ; if ••• then ..• IF ••• THEN •••
else ••• ; else ••.• ; ELSE

switch(•••) case ••• of N/A
{

case:
} end;

Comment:

/* */ { } REM •••

Pointer
Symbol:

* ?!$

struct record N/A
union N/A N/A

II

The conditional expressions 'if and 'switch' are

essentially identical to Pascal's own words 'if' and

'case', but there is no redundant 'then'. BASIC has

no analogue of the 'switch' construction. However,

the loop constructions of C are far superior to those

of either BASIC or Pascal. Input and output in C is

more flexible than Pascal, though correspondingly

less robust in terms of program crashability. Input

and output in C can match all of BASIC's string

operations and provide more, though string

variables can be awkward to deal with. You should

refer to the main text for full accounts of the C

vocabulary.

Questions:
1) Write a command to print out the message

'Wow big deal'.

2) Write a command to print out the number 22.

3) Write two different commands to print out 'The

3 Wise Men'.

4) Why are there only a few reserved command

words in C?

3 - RIVAL LANGUAGES

•

C - A DAB HAND GUIDE

II

II

II Systems &
Environment

Where is a C Program
Born? How is it Created?

The basic control of a computer rests with the

operating system. This is a layer of software which

provides the user with a comfortable environment in

which to work with the computer. An operating

system is usually thought of as having two main

components : a command language and a filing

system . The operating system is the route to all

input and output, whether it be to a screen, a file or

a disc . A language has to get at this input and

output easily so that programs can send out and

receive messages from the user. It also has to be in

contact with the operating system in order to send

C - A DABHAND GUIDE

•

out and receive these messages . In C the link

between these two is very efficient.

Operating systems vary widely. On microcomputers

they are usually very similar in concept, with just

slightly different words for essentially the same

commands. When most compiler languages were

developed, they were intended for large mainframe

computers which operated on a multi-user, time­

sharing principle and were incapable of interactive,

real-time communication with the user. Many

compiler languages still retained this inadequacy

when carried over to microcomputers, but C is an

exception because of its unique design. Input and

output are not actually defined as a fixed,

unchanging part of the C language, instead there is a

standard file which has to be included in programs.

This defines the input/output commands which are

supported by the language for a particular computer

and operating system. This file is called a standard C

library. (See the next chapter for more information .)

The library is standard in the sense that it would not

be very useful to have a different set of input/output

commands on each computer, each with different

words and commands. C has therefore developed a

standard library of words and functions which are

the same for all computers, but not all of which

generally will be present in the library file . To find

out which commands are allowed, check the manual

for your compiler.

Files and Devices
The filing system is also a part of input/output. In

many operating systems all routes in and out of the

computer are treated by the operating system as if

they were files (even the keyboard!) . C does this

4 - SYSfEMS & ENVIRONMENTS

implicitly. The file from which C normally gets its

input from, is called 'stdin' or standard input file,

and it is usually the keyboard. The corresponding

route for output is called 'stdout', or standard

output file, and is usually a monitor screen. Both of

these are parts of 'stdio' or standard input/output.

The keyboard and the monitor screen are not really

files, of course, they are 'devices' . It is not possible

to re-read what has been sent to the monitor, or

write to the keyboard. Devices are represented by

files with sp{:cial names, so that the keyboard is

treated as a read-only file and the monitor as a write­

only file . The advantage of treating devices in this

way is that you don't need to know how a particular

device works, only that it exists somewhere,

connected to the computer, and can be written to or

read from . In other words, it is exactly the same to

read or write from a device as it is to read or write

from a file . This is a great simplification of

input/output! The filenames of devices, often given

the lofty title 'pseudo device names', will depend

upon the particular operating system. For instance,

the printer might be called 'PRN' or 'PRT' . When

input is taken solely from the keyboard and output is

always to the screen, then these details can be

forgotten.

Filename Conventions
A convention is used by a compiler for the names of

the program files which it uses and produces. In C

this is probably the following:

or

A source program file: filename.c
A quadruples file: filename.q
An object file: filename.o
An executable program: filename.x

A header file:

filename.axe
(MS-005 specifically)
libraryname.h

•

C - A DABHAND GUIDE

•

The endings 'dot something' identify the file

contents for the compiler. The dotted endings mean

that the compiler can generate an executable file

with the same name as the original source, just a

different ending.

The quad file and the object file are only working

files and should be deleted by the compiler at the

end of compilation. The '.c' suffix is to tell the

compiler that the file contains a C source program,

and similarly the other letters indicate non-source

files in a convenient way. When executing a

compiler, you are usually expected to type only the

filename of a program itself, not the '.c' ending ie:

execute compiler filename

or:

cc filename

rather than :

execute compiler filename.c

or:

cc filename.c

The compiler checks for a file with the ending '.c'

The exception is UNIX (see below). A common

error is to forget this and to type the '.c' as well as

the filename. This results in an error message like

this:

Can't find filename.c.c

Unix C
The C compiler in UNIX system is an extended

implementation of Kernighan and Ritchie C, as

described in this book. It is not an ANSI standard

compiler, though many of the old restrictions have

been lifted. The programs presented in this book

should compile and run properly, the only proviso

4 - SYSTEMS & ENVIRONMENTS

being that the UNIX 'header files' (see next

chapter) will not necessarily be identical to those in

microcomputer implementations. This should not

make any significant difference here, but it is clear

that one should always consult the particular system

manual for any compiler before placing any implicit

trust in it!

The UNIX C compiler 1s invoked with the

command

cc program.c

Notice that the command is in lower case. UNIX,

like C, is case sensitive and is geared to work in

lower case. Also notice that here you m.ust type the

' .c' file extension. This is perhaps the only example

of a compiler in which it is actually required. The

compiler automatically links to its standard library,

but if you wish to include other libraries (eg to use

mathematical functions) you must use the -1 option,

eg

cc program.c -lm

This links to the maths library. The executable code

which results from compilation of any program is

always called

a.out

regardless of the name of your source file . You can

find out more about the UNIX compiler, on a

UNIX system, by examining the manual pages. Type

man cc

Here are some hints which will help you, if you are

unfamiliar with UNIX. The following is not meant

to be a substitute for learning UNIX properly .

UNIX is complex and powerful, so learn it well and

use it carefully.

•

C - A DABHAND GUIDE

II

You may execute a program as a background process

from your terminal (or window, if you are using a

window environment). A background process

should not take input from the keyboard, nor return

output to the console. It should deal solely with

files. The ampersand (&) character is used to signal a

background process. eg

a.out <inputfile >outputfile &

execute the program 'a.out', taking its input from

the file 'inputfile' and sending its output to

'outputfile' . When you type such a line, UNIX

prints a number on the next line which is the

number (or process ID (PID)) of the task.

You can list your active processes with the command

ps

This lists the process numbers (PID) and the names

of the programs. To kill any one of these processes,

use the command

kill -9 <PID>

where <PID> is the number of the process. The -9

option is not always necessary, but if used no task

can ignore the kill instruction.

To stop a program which is running in the

foreground, type CTRL-Z (CTRL and Z together).

After using this, you should then kill the task. The

process number may be found with ps even when

the job has been stopped.

Another useful feature for programmers is the pipe

facility which enables the output of one program to

be piped into the input of another. For example, the

UNIX utility 'more' allows you to view a text file

one screenfull at a time.

more filename

--

4 - SYSTEMS & ENVIRONMENTS

If you have a program (call it a.out) generating a lot

of output, which scrolls past too quickly to see, you

may view it one page at a time by piping the output

to more . The vertical bar character 'I' is used for

this.

a.out I more

will have the desired effect. For more details, you

should consult a book on UNIX or, alternatively,

consult the UNIX manual pages with the command

man <keyword>

Command Languages and

Consoles
In order to do anything with a compiler, or an

editor, it's essential to know something about the

command language of the operating system. This

means the instructions which can be given to the

system itself, rather than the words which make up a

C program. For example:

DIR

CAT

EXECUTE

In a large operating system (or even a relatively small

one), it can be a major feat of recollection to know

all of these commands! Fortunately, it is possible to

get by with knowing just a handful of the most

common ones, and having the system manual

around to leaf through when absolutely necessary.

Another important object is the 'panic button' or

BREAK key. Every system will have its own way of

breaking the operation of a program or the

execution of a command. This commonly involves

two simultaneous key-presses, such as CTRL-Z,

•

C-A DABHAND GUIDE

•

CTRL-A or CTRL-D and so on. It is worth finding

the panic button before using a compiler!

Editors
Many operating systems provide their own editors

for writing text. Often, they aren't very good! A

language development system will almost certainly

be provided with an editor ifthere isn't one already.

An editor must provide a simple way of altering the

contents of a text file so that programs can be

created, altered or corrected. Good computer

program editors have some standard features . It is

assumed here that all editors worthy of mention

possess these features. Remember, a text editor is

not at all like the BASIC line editor. Features to

look out for are as follows:

1) A compiler always supplies the line number in a

file at which an error occurred. An editor will

therefore have some way of going straight to a

particular line number.

2) A way of swapping all or selected instances of a

particular string in the file, such as 'search and

replace'

3) A way of inserting and deleting text.

Not all editors are endowed with such features, and

indeed some editors do not even have adequate ways

of inserting or deleting text. These editors ought to

be executed in the traditional sense of the word!

A good editor will also have a way of copying,

deleting and moving whole blocks of text, either by

placing markers around a block or, in modern

systems, by painting over areas of text with a mouse .

-

4 - SYSfEMS & ENVIRONMENTS

It is worth learning how to manipulate an editor

fully before trying to use it to write programs. It can

save you a lot of time in the long run.

Questions:
1) What is an operating system for?

2) What is a pseudo device name?

3) If you had a C source program which you

wanted to call 'accounts', what name would you

save it under?

4) What would be the name of the file produced by

the compiler of the program in question three?

a. ifthe compiler was on a micro

b. if the compiler was on UNIX.

5) How would this program be run?

•

C - A DABHAND GUIDE

•

II Libraries

Plug in C Expansions and

Header Files
The special commands which C offers programmers

are almost entirely contained in standard libraries.

Standard libraries are files of object code which are

merged with a C program during the linking phase

of compilation. They contain the ready-compiled

object code of pre-defined functions. To use them

you must norally type something extra when you

compile your program . For instance, to access

functions in the mathematics library (like sqrt(), and

sin()) on a UNIX system, you would type

cc program.c -lm

C - A DABHAND GUIDE

•

Im stands for library (mathematics). The exact syntax

you should use will be found in your compiler

manual, under 'compiler options'.

When you install a library, in order to use its

functions, it is invariably essential to declare those

functions to the compiler formally. To make this

easy, file which do this, called 'header files' are

already created for you. You use C's preprocessor to

include them in your program's declarations.

Header files don't just contain essential declarations,

but may also contain extra 'macro' definitions. They

always end in 'h' and are called header files because

they are normally slotted in at the head of a

program.

The most commonly used library is the standard

input/output library, whose header file is called

'stdio.h'. Header files are accessed using the word:

#include

at the top of a program file, so that :

#include "stdio.h"

or :

#include <stdio.h>

would make declarations which allow the standard

input/output (I/O) functions to be used in a file.

(The #include directive is actually a command to the

C pre-processor, which is dealt with later.)

Although some functions can be used without

having to include header files, it is best to consult

the compiler manual to be certain. The stdio.h file

is almost always required, since it is hard to create

useful programs without input and output! A very

simple C program illustrates how this works:

#include <stdio.h>

main ()

5 - LIBRARIES

fprintf (stdout,"C standard I/O file is

included\n");

fprintf (stdout,"Hello world!");

A program wishing to use a mathematical function

such as cos() would need to include a mathematics

library header file . This would probably be called

'math.h' :

#include <stdio.h>

#include <rnath.h>

main ()

{ double x,y;

y = sin (x);

printf ("Maths library ready");

A particular operating system might require its own

special library for certain operations such as using a

mouse or for opening windows in a WIMP

environment, for example. These details will be

found in the manual for a particular C compiler or

operating system.

Although there is no limit, in principle, to the

number of libraries which can be included in a

program, there may be a practical limit: namely

memory, since every library adds to the size of both

source and object code . Libraries also add to the

time it takes to compile a program.

It is difficult to know what names libraries will have

in a particular implementation. It is certain that

stdio.h will always be called stdio.h, but the names

of other libraries or the distribution of functions

within them might differ. The only way to make

certain is to check it in the compiler manual. One of

•

C - A DABHAND GUIDE

•

the purposes of the ANSI standard has been to

rationalize the C header files .

Questions:
1) How is a header file incorporated into a C

program?

2) Name the most common library file in C.

3) Is it possible to define new functions with the

same names as standard library functions?

Programming
style

The Shape of Programs to
Come
An important aspect of programming, which is often

ignored in computing texts, is that computer

programs are not only a way of communicating

instructions to a computer, they are also a means of

communicating ideas between people.

C is actually a free-format language. This means that

there are no rules about how it must be typed, when

to start new lines, where to place brackets or

whatever. This has both advantages and dangers.

The advantage is that the user is free to choose a

style which best suits him or her, and there is

C - A DAB HAND GUIDE

•

freedom in the way in which a program can be

structured. The disadvantage is that, unless a strict

style is adopted, very sloppy programs can be the

result . The reasons for choosing a well structured

style are that:

1) Long programs are only manageable if those

programs are properly organised.

2) Programs are only understandable if care is taken

in choosing the names of variables and functions.

3) It is much easier to find parts of a program if a

strict ordering convention is maintained.

No simple set of rules can ever provide the ultimate

solution to writing good programs . In the end,

experience and good judgement are the factors

which decide whether a program is well written or

not . The programs in this book are written

according to a strict set of rules, which I believe are

a good way of incorporating style into a program.

They are explained in Appendix A.

Restrictions of memory size and of particular

compilers often force restrictions upon style, making

programs clustered and difficult. These pressures are

recognised, but they are regrettable for the

readability of programs . Most micro computers

today are equipped with at least half a megabyte of

free memory, so this should not be a problem .

Books always assume that there are no pressures of

this kind anyway. This one will not be any different!

II

a Form of a C
Program

What Goes into a C
program?

What Will it Look Like?
Unlike both BASIC and Pascal, a C program is

entirely made up of building blocks which have a

particular 'shape' or form and the form is the same

everywhere in a program, whether it is the form of

the main program or of a subroutine. A program is

made up of instructions surrounded by curly

brackets or braces { } and statements which are

called declarations.

C - A DABHAND GUIDE

LevelO

Level 1

The basic building block in a C program is called a

function. Every C program is a collection of one or

more functions which are written in some arbitrary

order. One, and only one, of these functions in the

program must have the name 'main'. This function

is always the starting point of a C program, so the

simplest C program would be a single function

definition as follows:

main ()

The brackets '()' which follow the name of the

function must be included, even though they

apparently serve no purpose. This is how C

distinguishes functions from ordinary variables.

The function main() does not have to be at the top

of a program, so a C program does not necessarily

start at line one. It always starts where main() is.

This is a new idea in C. Also, the function main()

can't be called from any function. Only the

operating system can call the function main(); this is

how a C program starts.

Function 1 ()
{
}

Main ()

Function 4 ()
{
}

Leve12ffiDD

Figure 7.1. C Programs are built from functions .

•

7 - FORM OF A C PROGRAM

Any function can be defined like the one on the

previous page. The next most simple C program in

listing 7 .1 is perhaps a program which calls a

function 'do_nothing' and then ends.

Listing 7 .1. A 'do_nothing' program.

/**/
/* Program : do nothing *I
/**/

main ()

do_nothing ();

}

/* Main program */

/**/
do_nothing () /* Function called */

The program now consists of two functions, one of

which is called by the other. There are several new

things to notice about this program. First, the

function 'do_nothing' is called by typing its name

followed by the characteristic '()' brackets. This is all

that is required to transfer control to the new

function. No words such as CALL or PROC exist in

c.

All instructions in C must end with a semi-colon

(after the () brackets). The semi-colon is vital. This

is a signal to inform the compiler that the end of a

statement has been reached and anything which

follows is meant to be a part of another statement.

Although most compilers could manage without the

semi-colon, like many languages, C requires the

programmer to use this form of punctuation. The

habit of typing semi-colons is quickly acquired .

•

C - A DABHAND GUIDE

•

The 'brace' characters { and) mark out a 'block'

into which instructions are written. When the

program meets the) 'brace' character this signals the

end of a block of something, in this case the end of

the function called do_nothing().

When the program meets the closing brace } it then

transfers back to main() where it meets another }

brace and the program ends. This is the simplest way

in which control flows between functions in C.

All the functions have the same status as far as a

program is concerned. The main() function is

treated just as any other function. When a program

is compiled, each function is compiled as a separate

block and then at the end a 'linker' phase in the

compiler attempts to sew them all together. These

examples are obviously very simple. Hopefully, a C

program will contain more than just empty

functions!

There are some basic parts to a C program which are

used to build up meaningful programs - these are

listed below in the order they are generally required.

-) comments

-) pre-processor commands

1) functions

2) declarations

3) variables

4) statements

Neither comments nor preprocessor commands have

a special place in this list - they do not have to be in

any one particular place with respect to the others.

The following skeleton plan of a program helps to

show how the elements of a C program relate. The

following chapters will then expand upon this as a
kind of basic plan .

7 - FORM OF A C PROGRAM

Listing 7 .2. A Skeleton C Program.

/***/

/*

/* Skeleton program plan

/*

*/

*/

*/

/***/

#include <stdio.h>

#include <myfile.c>

#define scream

#define numofbones

/* Preprocessor defns */

"arghhhhh"

123

/***/

main ()

{ int a,b;

functionl();

function2(a,b);

/* Main program & start */

/***/

functionl () /* Purpose */

/***/

function2 (a,b) /* Purpose */

int a,b;

II

C - A DABHAND GUIDE

II

Questions:
1) What is a block?

2) Name the six basic things which make up a C

program file.

3) Does a C program start at the beginning? Where

is the beginning?

4) What happens when a program comes to a

character? What does this character signify?

5) What vital piece of punctuation goes at the end

of every C statement?

11

B Comments

Annotated Programs
Comments are a way of inserting remarks and

reminders into a program without affecting the

program m any way.

Comments do not have a fixed place in a program -

a compiler treats them as though they were 'white

space' or blank characters, so they are ignored . One

of the pleasant features of working with a compiled

language, is that programs can contain any number

of comments without losing speed. This is because

comments are stripped out of a source program by

the compiler when it converts the source program

into machine code. This useful fact means that there

are no restrictions upon the use of comments in

programs. Typically, a program might have one or

two comments for each function (at least one which --

C - A DABHAND GUIDE

describes what it does). However, it is not a good

idea to go mad with comments. Some programmers,

when finding themselves in the position of being

able to comment a program without loss of

efficiency, become wild and frenzied and spend half

their tortured lives filling up their programs with

comments which completely obscure their code!

This is totally unnecessary, since C gives the

programmer complete freedom to choose the

meaningful variable names which should be used to

make code self-explanatory!

Comments are marked out (or 'delimited' in the

standard jargon) by the following pair of characters:

/* comment *I

Because a comment is skipped over as though it

were a single space, it can be placed anywhere where

spaces are valid characters, even in the middle of a

statement, though this is not to be encouraged.

Listing 8.1. How to use comments in C.

main () /* The almost trivial program */

/* This little line has no effect */

/* This little line has none */

/* This little line went all the way down to the

next line

And so on ... */

II

8-COMMENTS

Listing 8.2. How to use comments in C.

#include <stdio.h>

#define notfinished

/* header file */

0

/**/

/* A bar like the one above can be used to*/

/* separate functions visibly in a program*/

main ()

int i; /* declarations*/

do

/* Nothing I I I */

while (notfinished);

Question:
1) What happens if a comment is not ended? That

is, if the programmer types /* .. to start but

forgets the .. * / to close.

•

C - A DAB HAND GUIDE

•

II

a Functions

Making Black Boxes

Solving Problems and
Getting Results
A function is a module or block of program code

which deals with a particular task and is isolated

from other blocks of code by the programmer.

Functions help to organise a program in a simple

way; they are always written in the following form:

identifier (para:rreterl,para:rreter2, ..)

types of parameters;
{ variable declarations;
statements ..

C - A DABHAND GUIDE

II

A function has a name or identifier by which it is

referred to when called in a program. It can accept

variables called parameters which it uses to receive

information from the outside world. It also consists

of a number of statements and declarations,

enclosed by curly brackets {) , which make up the

doing part of the object. The declarations and 'type

of parameter' statements are formalities which will

be described in good time. (They are a necessary but

frankly irrelevant part of a program.)

The name of a function in C can be anything from a

single letter to a word up to 31 characters long.

The name of a function must begin with an

alphabetic letter or the underscore '_' character .

The other characters in the name can be chosen

from the following groups:

a ... z

A ... Z

0 ... 9

(any letter from a to z)

(any letter from A to Z)

(any digit from zero to 9)

(the underscore character)

This means that sensible names can be chosen for

functions which make a program easy to read.

A real example of a function is the following very

simple example which adds together two integer

numbers 'a' and 'b' and prints the result 'c'. All the

variables are chosen to be integers to keep things

simple and the result is printed out using the print­

formatted function, printf, from the standard library,

with a '%d' to indicate that it is printing an integer .

.Ad:i Two Nurrters (a,b) /* .Ad:i a and b */
int a.r b;

{ int c;

c = a + b;

printf (" %d",c);

Notice the position of the function name and where

brackets and semi-colons are placed. This is crucial.

The details are quickly learnt with practice and

experience.

This function is not very useful standing alone . It

has to be called from some other function

somewhere is a program, and this could well be the

main program of a C source file. A function is

' called' (ie , control is passed to the function) by

typing in its name and the usual brackets() to follow

it, along with the values which are to be passed to

the function :

main ()

int c,d;

c = 1;

d = 53;

Add Two Numbers (c,d);

Add Two Numbers (1,2);

The result of this program would be to print out the

number 54 and then the number three, then stop.

Listing 9.1 is a simple program which makes use of

some functions in a playful way . The following

structure diagram shows how this can be visualised

and the significance of the program 'levels' . The idea

is to illustrate the way in which functions connect

together:

LevelO: main()

Levell: Down One()

I \

Level2: DownLeft() DownRight()

9 - FUNCTIONS

•

C - A DAB HAND GUIDE

Listing 9.1. Making use of functions.

/***/

I*
/* Function Snakes & Ladders

/*

*/

*/

*I
/***/

#include <stdio.h>

/***/
/* Level 0 */

/***/
main ()

printf ("This is level 0: the main program\n");

printf ("About to go down a level \n");

DownOne ();

printf ("Back at the end of the start! !\n");

/***/
/* Level 1 */

/***/
DownOne () /* Branch out! */

printf ("Down here at level 1, all is well\n");

DownLeft (2);

printf ("Through level 1 \n");

DownRight (2);

printf ("Going back up a level!\n);

/***/
/* Level 2 */

/***/

II

9 - FUNCTIONS

DownLeft (a) /* Left branch */

int a;

printf ("This is deepest level %d\n",a);

printf ("On the left branch of the picture\n");

printf ("Going up!!");

/***/

DownRight (a) /* Right branch */

int a;

printf ("And level %d again!\n",a);

Functions with Values
In other languages and in mathematics, a function is

understood to be something which has a value or a

number associated with its name. That is, the whole

function is thought of as having a value . In C it is

possible to choose whether or not a function will

have a value. It is possible to make a function hand

back a value to the place at which it was called .

Take the following example:

bill= CalculateBill (data ...);

The variable 'bill' is assigned to a function.

'CalculateBill()' and 'data' are some data which are

passed to the function. This statement makes it look

as though CalculateBill() is a number. When this

statement is executed in a program, control will be
passed to the function CalculateBill() until it is

finished whatever it does and this function will then

•

C - A DABHAND GUIDE

.I""----

hand back control and some value to the original

statement. The value of the function is assigned to

'bill' and the program continues. Functions which

work in this way are said to 'return' a value.

In C, returning a value is a simple matter. A very

useful function called 'return()' is used to do this.

'return()' is defined by the C language on every

implementation so it is not something that a user

has to write personally. Consider the function

CalculateBill() from the statement on the previous

page:

CalculateBill (a,b,c)/* Adds up a, band c */

int a,b,c;

{ int total;

total = a + b + c;

return (total);

As soon as the return() function is met,

CalculateBill() stops executing and assigns the value

'total' to the function . If there were no return()

function, the program could not know which value

it should associate with the name CalculateBill and

so it would not be meaningful to speak of the

function as having one value. Forgetting a return()

statement can ruin a program. For instance if

CalculateBill had just been:

CalculateBill (a,b,c)

int a,b,c;

{ int total;

total = a + b + c;

then the value 'bill' would be garbage, presuming

that the compiler allowed this to be written at all.

On the other hand, if the first version were used (the

one which did use the return(total) statement) and

furthermore no assignment were made:

main ()

CalculateBill (1,2,3);

then the value of the function would be discarded,

quite legitimately. This is usually what is done with

the input/output functions printf() and scanf()

which actually return values. So a function in C can

return a value but it does not have to be used . On

the other hand, a value which has not been returned

can't be used safely.

Note: Functions do not have to return integer

types: they can usually return a value which is any

data type at all. See the next chapter about this

subject.

Breaking Out Early
Suppose that a program is in the middle of some

awkward process in a function which is not main(),

perhaps two or three loops working together, for

example, and suddenly the function finds its answer.

This is where the beauty of the return statement

becomes clear. The program simply can call

return(value) anywhere in the function and control

will jump out of any number of loops, or whatever,

and pass the value back to the calling statement

without having to finish the function up to the

closing brace, } . The result is immediate and it

avoids using a much dreaded word in programming,

'go .. ', which is far less elegant. This is the first of

several such facilities in C which banish the need for

the terrible 'go ... '!

9 - FUNCTIONS

•

C - A DABHAND GmDE

function (a,b)

int a,b;

/* breaking out of functions early */

while (a < b

if (a > b)

return (b);

a = a + 1;

•

The example illustrates this. The function is entered

with some values for a and b and, assuming that a is

less than b, it starts to execute one of C's loops

called 'while'. In that loop, is a single 'if statement

and a statement which increases a by one on each

noop. If a becomes bigger than b at any point, the

return(b) function gets executed and the function

quits, without having to arrive at the end brace,),

and passes the value of b back to the place it was

called.

The exit Function
Many C compilers will provide a function called

exit() which can be used to quit a program at any

point, no matter how many levels of function calls

have been made. This is called with a return code,

like the example below:

#define code 0

exit (code);

Functions and Types
All the variables and values used up to now have

been integers. But what happens if a function is

required to return a different kind of value such as a

character? A statement like:

bill= CalculateBill (a,b,c);

can only make sense if the variable 'bill' and the

value of the function CalculateBill() are the same

kind of object. In other words, if CalculatBill()

returns a floating point number, then 'bill' cannot

be a character! Both sides of an assignment must

match . In fact this is done by declaring functions to

be of a particular type. So far no declarations have

been needed because C assumes that all values are

integers unless this is specifically changed.

Declarations are covered in detail in the next

chapter.

Questions:
1) Write a function which takes two values a and b

and returns the value of(a*b) .

2) Is there anything wrong with a function which

returns no value?

3) What happens if a function returns a value but is

not assigned to anything?

4) What happens if a function is assigned to an

object but that function returns no value?

5) How can a function be made to quit early?

9-FUNCI10NS

•

C - A DABHAND GUIDE

•

Types &
Declarations

Storing Data

Descriminating Types

Declaring Data
A variable is an area of memory with a name (or

identifier). The name of a variable in C can be

anything from a single letter to a word up to 32

characters long. The name of a variable must begin

with an alphabetic letter or the underscore '_'

character, but the other characters in the name can

be chosen from the following groups:

a ... z (any letter from a to z)

C - A DABHAND GUIDE

II

A ... Z (any letter from A to Z)

0 ... 9 (any digit from zero to 9)

(the underscore character)

Some examples of valid variable names are:

a

total

Out_ of_ Memory

VAR

integer

In C, variables do not only have names, they also

have types. This idea will be unfamiliar to users who

are only familiar with BASIC. The variable 'type'

conveys to the programmer and to the compiler

what sort of data can be stored in it. In BASIC and

in some older, largely obsolete languages, like PL/l,

a special naming convention is used to determine

the sort of data which can be held in particular

variables . For example, the dollar symbol is

commonly used in BASIC to mean that a variable is

a string and the percentage symbol is used to

indicate an integer. No such convention exists in C.

Instead you 'declare' the types of variables before

they are used. This serves two distinct purposes:

a) It gives a compiler precise information about the

amount of memory that will have to be given

over to a variable when a program is finally run,

and what sort of arithmetic will have to be used

on it (eg, integer only or floating point or

none).

b) It provides the compiler with a list of the

variables in a convenient place so that it can

cross-check names for any errors.

10 - TIPES & DECLARATIONS

PROGRAM

Main ()

function () function 2 ()

' '
I

I
I

I
I

I
\ Imaginary links

I
I

!
\ to the program
~

Name: ch
Type: (char)

integer
(int)

Figure 10.1 . Variables are storage places used by a program.

There are a lot of different possible ' types' in C. In

fact it is possible for the user to define his/her own,

but luckily, for the beginner, there is no need to do

this right away: there are some basic types which are

provided by C ready for use. The names of these

types are all reserved words in C and they are

summarised as follows :

char a single character

short a short integer (usually 16-bits)

short int a short integer

int a standard integer (usually 32-bits)

long a long integer

long int a long integer (usually 32-bits)

float a floating point or real number (short)

II

C - A DABHAND GUIDE

•

long float a long floating point number

double a long floating point number

void

en um } these are discussed in Chapter 23 .

volatile

In addition to the words above, the word 'unsigned'

can also be placed in front of any of these types.

Unsigned means that only positive or zero values

can be used. That is there is no minus sign . The

advantage of using this kind of variable is that

storing a minus sign takes up some memory, so that

if no minus sign is present, larger numbers can be

stored in the same kind of variable. (The proposed

ANSI standard mentioned earlier also allows the

word 'signed' to be placed in front of any of these

types, to indicate the opposite of unsigned. This

word is completely redundant.) The words int and

double are usually the same as long int and long

float, but you should check your manual to be sure.

Declarations
To declare a variable in a C program, you simply

write the type of a variable followed by a list of

variable names which are to be treated as that type:

typenarre variablenarrel, .. , .. ,variablenarreN;

For example:

int i,j;

char ch;

double x,y,z,fred;

unsigned long int Name_of_Variable;

Failing to declare a variable is more risky than

passing through customs and failing to declare

villainous substances! A compiler is markedly more

IO - TIPES & DECLARATIONS

efficient than a customs officer: it will catch a

missing declaration every time and will terminate a

compiling session while complaining bitterly, often

with a host of messages, one for each use of the

undeclared variable.

As an aside: I once had the unusual pleasure of

meeting a business executive of a large, well-known

computing organisation who said: 'The way to write

a program is to hammer out the basic idea,

forgetting about all the details. Then run the

compiler to see what you have to declare, then try to

find all the bugs!' A word of advice - Don't even

think of it! Computer programs should be

thoughtful creations, not based on the philosophy

that, if you hit something hard enough, it's bound

to go a long way. The gentleman concerned

admitted that programming took him a long time

and that he didn't feel that he had quite grasped it

to the full!

Where to Declare Things
There are two kinds of place in which declarations

can be made. The implications of using the different

options are discussed in Chapter 12. For now it will

do to simply state what these places are.

a) One place is outside all of the functions . That is,

in the space between function definitions.

Underneath the #include <stdio .h> line, for

instance. Variables declared here are called

global variables. There are other names for them

as well, such as static or external in special cases .

•

C - A DABHAND GUIDE

II

#include <stdio.h>

int globalinteger; /* Here! outsioo {) *I

float global_floating_point;

main ()

b) The other place where declarations can be made

is following the opening brace of a block. Any

block will do, as long as the declaration follows

immediately after the opening brace . Variables

of this kind only work inside their braces {) and

are often called local variables. Another name

which is sometimes used for them is automatic

variables.

or:

main ()

{ int a;

float x,y,z;

/* statements */

function ()

{ int i;

/* */

while (i < 10)

{ char ch;

int g;

/* */

Declarations and
Initialisation
When a variable is declared in C, the language allows

a neat piece of syntax which means that variables can

be declared and assigned a value in one go. This is

10 - TIPES & DECLARATIONS

no more efficient than doing it in two stages, but it

is sometimes tidier. The following lines:

int i = O;

char ch = 'a';

are equivalent to the more longwinded

inti;

char ch;

ch= 'a';

This is called 'initialisation' of the variables. C always

allows you to write declarations/initialisers in this

way, but it is not always desirable to do so. If there

are just one or two declarations, then this

initialisation method can make a program neat and

tidy. If there are a lot, then it is better to initialise

separately, as in the second case. How many is 'a

lot'? The answer is, when it starts to look as though

there are too many! It makes no odds to the

compiler, nor (ideally) to the final code whether the

first or second method is used. It is only for tidiness

that this is allowed. If you do not initialise a variable

you have declared, its value will be garbage,

generally, static variables are set to zero by the

compiler (that includes global variables, which are

always static) but local variables are not!

Individual Types
Characters
A character type is a variable which can store a single

character. In C, single characters are written
enclosed by single quotes! This is in contrast to

•

C - A DAB HAND GUIDE

strings of many characters which use double quotes.

For instance, if 'ch' is the name of a character:

char ch;

ch 'a' ;

would give ch the value of the character 'a'. The

same effect can also be achieved by writing:

char ch = 'a';

A character can be any ASCII character, printable or

not printable, from values -128 to 127. But only

zero to 127 are used. Control characters, ie, non­

printable characters, are put into programs by using

a back-slash,\, and a special character or number.

The characters and their meanings are as follows:

\b backspace, BS

\f form feed, FF (also clear screen)

\n new line, NL (like pressing return)

\r carriage return, CR (cursor to start of line)

\t horiwntal tab, HT

\v vertical tab (not all versions)

\" double quotes (not all versions)

\' single quote character '

\\ back-slash character\

\ddd character ddd where ddd is an ASCII code

given in octal or base 8. (See Appendix C.)

Listing 10.1. Special characters.

/**/

/*

/* Special Characters

/*

*/

*/

*/

/**/

#include <stdio.h>

main ()

{

II

10 - TIPES & DECLARATIONS

printf ("Beep! \7 \n");

printf ("ch= \'a\' \n");

printf (" <- Start of this line!! \r");

The output of this program is as follows:

Beep!

ch = 'a'

<- Start of this line!!

The bell will sound when Beep! is printed and the

text cursor is left where the arrow points.

It is also possible to have the type:

unsigned char

This admits ASCII values from zero to 255, rather

than -128 to 127.

Integers
There are h\ro integer types in C and they are called

'long' and 'short'. The difference between the two is

the size of the integer, where either can hold the

amount of storage required for them. It can be seen

from the list just mentioned that there are a handful

of ways to declare integers. Fortunately, only two

have to be remembered, the rest are just different

ways of declaring the same thing. Most commonly,

the two to remember are 'int' and 'short'. 'int'

means a long integer and 'short' means a short one.

On a typical 16-bit micro the size of these integers

may be as follows:

Type Bits Possible Values

short 16 -32768 to 32767

unsigned short 16 zero to 65535

int 32 -2147483648 to

2147483647

•

C - A DABHAND GUIDE

•

long

unsigned int

32

32

(ditto)

zero to 4294967295

They are declared in the usual way:

int i, j;

i j = 0;

or:

int i=O,j=O;

Floating Point
There are long and short floating point numbers in

C . It is worth noting that all the mathematical

functions which C can use require 'double' or 'long

float' arguments, so it is common to use the type

float for storage of small floating point numbers

only, and to use double elsewhere . It is worth

noting that this is not always true as the C 'cast'

operator allows temporary conversions to be made.

On a typical 16-bit implementation, the different

types would be organised as follows:

Type Bits

float 32

double 32

long float 32

Typical declarations:

float x,y,z;

x = 0.1;

y 2.456ES

z = O;

Possible Values

+/- lOE-37 to+/- 10E38

+/- lOE-307 to+/- 10E308

(ditto)

double bignum,smallnum;

10 -1YPES & DECLARATIONS

bignum 2.36E208;

smallnum = 3.2E-300;

Choosing Variables
The sort of procedure that a programmer would

adopt when choosing variable names would

probably be something like the following :

a) Decide what a variable is for and what type it

needs to be.

b) Choose a sensible name for the variable.

c) Decide where the variable is allowed to exist.

d) Declare that name to be a variable of the chosen

type.

Some local variables are only used temporarily, for

controlling loops for instance. It is common to give

these short names (single characters) . A good habit

to adopt is to keep to a consistent practice when

using these variables. A common one, for instance is

to use the letters:

int i,j,k;

For integer types. There is no particular reason why

this should be, it is just common practice. Similarly,

names like:

double x,y,z;

tend to make one think of floating point numbers.

Assigning Variables
Variables can be assigned numerical values:

var = 10;

and assigned to each other:

varl = var2;

In either case the objects on either side o(the '='
symbol must be of the same type. It is not possible,----~.

j

C - A DABHAND GUIDE

•

nor is it sensible, to assign a floating point number

to a character, because there is just no single

character which can be used to represent a floating

point number! A compiler therefore forbids this. So:

int a, b = 1;

a = b;

is a valid statement, but:

float x = 1.4;

char ch;

ch = x;

is wrong!

There is a single exception to this rule. Integers and

characters will inter-convert because characters are

stored by their ASCII codes (which are integers!)

Thus the following will work:

int i;

char ch = 'A';

i = ch;

printf ("The ASCII code of %c is %d",ch,i);

The result of this would be:

The ASCII code of A is 65

Types and the Cast

Operator
It is worth mentioning a very valuable operator in C.

It is called the cast operator, and its function is to

convert one type of value into another. For instance,

it would convert a character into an integer:

int i;

char ch '\n' ;

i = (int) ch;

The value of the integer would be the ASCII code

_____ for the character. This is the only integer which it

10 -1YPES & DECLARATIONS

would make any sense to talk about in connection

with the character. Similarly, floating point and

integer types can be inter-converted:

float x = 3.3;

int i;

i = (int) x;

The value of i would be three because an integer

can't represent decimal points, so the cast operator

rounds the number. There is no such problem the

other way around.

FLOAT CAST

Figure 10.2. The cast operator in action.

For example :

float x;

int i = 12;

x = (float) i;

The general form of the cast operator is therefore:

(type) variable

It does not always make sense to convert types . This

will be seen particularly with regard to structures

INT

---~.

C ~A DABHAND GUIDE

and unions. Cast operators crop up in many areas of

C. This is not the last time they will have to be

explained.

Listing 10.2. Demo of cast operator.

/***/

I*
/* Demo of Cast operator

I*

*I
*/

*/

/***/

#include <stdio.h>

main () /* Use int float and char */

{ float x;

int i;

char ch;

x 2.345;

i (int) x;

ch = (char) x;

printf ("From float x =%f i =%d ch=%c\n",x,i,ch);

i 45;

x (float) i;

ch = (char) i;

printf ("From int i=%d x=%f ch=%c\n",i,x,ch);

ch = '*' ;
i (int) ch;

x (float) ch;

printf ("From char ch=%c i=%d x=%f\n",ch,i,x);

•

10 - TIPES & DECLARATIONS

Storage Classes:

Register, Static and Extern
Here are some remarks about advanced features of

C. When it is critical that a program runs as fast as

possible, variable declarations whose types are 'int'

or 'char' can be preceded by the word 'register'

which is a reserved word in C . The compiler takes

this to mean that these variables will be heavily used

and that storage should be found for them in

registers, if at all possible. If the compiler is able to

do this (and there is no guarantee that it will), then

this should result in a noticeable increase in

efficiency.

register int i;

register char ch;

Sometimes C programs are written in more than one

text file . If this is the case then, on occasions, it will

be necessary to get at variables which were defined

in another file . If the word 'extern' is placed in front

of a variable, then it can be referenced across files:

File one File two

main () int i;

extern int i; function ()

In this example, the function main() in file one can

use the variable i from the function main in file two.

A third class is called 'static' . The name static is

given to variables which can hold their values

between calls of a function. They are allocated once

and once only and their values are preserved

II

C - A DABHAND GUIDE

II

between any number of function calls. Space is

allocated for static variables in the program code

itself and it is never disposed of unless the whole

program is . Note: Every global variable, defined

outside functions automatically has the type static .

The opposite of static is auto. Static variables are

initialised to zero when they are declared . Note:

Static variables are set to zero when created. Auto

variables contain only garbage.

Functions, Types and
Declarations
Functions do not always have to return values which

are integers, despite the fact that this has been

exclusively the case up to now. Unless something

special is done to force a function to return a

different kind of value, C will always assume that the

type of a function is an integer.

If you want this to be different, then the function

has to be declared to be a certain type, just as

variables have to be . There are two places where this

must be done:

a) The name of the function must be declared a

certain type where the function is declared. For

example a function which returns a float value

must be declared as:

float functionl ()

return (1.229);

A function which returns a character:

char function2 ()

10 - TIPES & DECLARATIONS

return('*');

b) As well as declaring a function's identifier to be

a certain type in the function definition, it

(irritatingly) must be declared in the function in

which it is called too! The reasons for this are

related to the way in which C is compiled. So, if

the two functions above were called from

main(), they would have to declared in the

variables section as follows:

main ()

char ch, function2 () ;

float x, functionl ();

x = functionl () ;

ch = function2 () ;

If a function whose type is not integer is not

declared like this, then compilation errors will result!

Notice also that the function must be declared inside

every function which calls it, not just main() .

Alternatively it can be declared globally at the head

of the program, once and for all.

Redundant Keywords
There is a number of reserved words which are

seldom used and not really required by the

language . These are included in C because the

designers believed they can make code clearer. The

following words are optional and are not used in this

book. However, the reader may see them used

elsewhere . They are:

auto Means an automatic variable . The name

automatic is used because these variables are

•

C - A DABHAND GUIDE

•

automatically allocated for the programmer

when they are needed and disposed of

afterwards. The opposite of auto is static,

but all local variables are auto by default, so

only the word 'static' is really required.

fonnal In some compilers this means a formal

parameter.

signed Is an ANSI proposed standard and means

all types are signed by default.

Questions:
1) What is an identifier?

2) Say which of the following are valid C
identifiers: a) Ralph23

b) 80shillings
c) mission_control
d)A%
e) A$
f) _off

3) Write a statement to declare two integers called i

and j.

4) What is the difference between the types float

and double?

5) What is the difference between the types int and

unsigned int?

6) Write a statement which assigns 67 to the

integer variable 'I'.

7) What type does a C function usually return?

8) A function has to be declared 'long float' in, at

least, two places. Where are these?

9) Write a statement, using the cast operator, to

print out the integer part of the number

23.1256.

10) Is it possible to have an automatic global

variable?

m Parameters Be
Functions

Ways In and Out of
Functions
Not all functions will be as simple as the ones we

have come across so far. Functions are more useful if

they can be given information to work with and if

they can reach variables and data which are defined

'outside' of them. Examples of this have already

been seen in a limited way. For instance the function

CalculateBill accepted the three following values a, b

and c.

CalculateBill (a,b,c)

int a,b,c;

{ int total;

C - A DAB HAND GUIDE

II

total a + b + c;

When variable values are handed to a function, by

writing them inside a functions brackets like this, the

function is said to accept parameters. In

mathematics, a parameter is a variable which

controls the behaviour of something. In C it is a

variable which carries some special information. In

CalculateBill the 'behaviour' is the addition process.

In other words, the value of 'total' depends upon

the starting values of a, b and c. Parameters are

about communication between different program

functions. They are like messengers which pass

information to and from different places. They

provide a way of getting information into a function,

but they can also be used to get information back.

Parameters are usually split into two categories:

'value' parameters and 'variable' parameters. Value

parameters are a way of communicating by carrying

information into a function from somewhere

outside . Variable parameters are two-way.

Declaring Parameters
A function was defined as:

identifier (parameters ...)

types of parameters

Parameters, like variables and functions, also have

types which must be declared. For instance:

11 - PARAMETERS & FUNCTIONS

functionl (i,j,x,y)

int i,j;

float x,y;

or alternatively :

char function2 (x,ch)

double x;

char ch;

{ char ch2

return (ch2);

'*I • ,

Notice that they are declared outside the block

braces {). This is because they come from outside

the function - from somewhere else in the program.

Value Parameters
A value parameter is the most common kind of

parameter. All of the examples up to now have been

examples of 'value' parameters. When a value

parameter passes information to a function, its value

is copied to a new place which is completely isolated

from the place where that information came from.

An example helps to show this. Consider a function

which is called from main() whose purpose is to add

together two numbers and to print out the result .

•

C - A DABHAND GUIDE

•

#include <stdio.h>

main ()

add (1, 4);

/***********************************/

add (a,b)

int a,b;

printf (" %d", a+b);
}

When this program is run, two new variables

automatically are created by the language, called a

and b . The value one is copied into a and the value

four is copied into b. Obviously, if a and b were

given new values in the function add(), then this

could not change the values one and four in main(),

because one is always one and four is always four .

They are constants. However, if instead the program
had been:

main ()

{ int a = 1, b 4;

add (a, b) ;

/***********************************/

add (a,b)

int a,b;

11- PARAMETERS &FUNCTIONS

printf (~%d", a+b);

then it is less clear what will happen . In fact exactly

the same thing will happen:

1) When add() is called from main() two new

variables, a and b, are created by the language

(which have nothing to do with the variables a

and b in main() and are completely isolated from

those particular variables).

2) The value of a in main() is copied into the value

ofa in add()

3) The value of b in main() is copied into the value

ofb in add()

main ()

{ int a = 1 , b = 4

add (a,b);
}

add (i,j)
inti,j:
{

The variables i and j
inside ()3et the values
from a an b but they can't
send data back and change
a orb.

Figure 11.1. Value parameters in action .

•

C - A DAB HAND GUIDE

•

Now, any reference to a and b within the function

add() only refers to the two newly created variables

and not to the original ones which appeared in

main() . This means that if a and b are altered in

add(), they will not affect a and b in main(). More

advanced computing texts have names for the old

and the new a and b :

Actual Parameters: These are the original

variables which were handed

over to a function. Another

name for this is an argument.

Formal Parameters: These are the copies which

work inside the function

which was called .

Let's look at some points about value parameters.

The names of formal parameters can be anything at

all. They do not have to be the same as the actual

parameters . So in the example just mentioned it

would be equally valid to write:

#include <stdio.h>

main ()

{ int a = 1, b 4;

add (a,b);

/***********************************/

add (i, j)

int i, j;

printf (" %d", i+j);

11 - PARAMETERS & FUNCTIONS

In this case the value of a in main() would be copied

to the value of i in add() and similarly the value of b

in main() would be copied to the value ofj in add().

The parameters must match by data-type when

taken in an ordered sequence. This means that it is

not possible to copy a floating point number into a

character formal parameter. The compiler will spot

this if it is done accidentally.

For example:

main ()

function ('*', 1.0);

/********************************/

function (ch,i)

char ch;

int i;

is wrong because 1.0 is a floating point value, not an

integer. The parameters ought to, but need not

necessarily match in number! This surprising fact is

important because programs can go wrong because a

formal parameter is missed out. If the number of

actual parameters is more than the number of formal

parameters and all the parameters match in type,

then the extra values are just discarded . If the

number of actual parameters is less than the number

of formal parameters, then the compiler will assign

•

C - A DABHAND GUIDE

II

some unknown value to the formal parameters. This

will probably be garbage.

Functions as Actual
Parameters
The value of a function can be used directly as a

value parameter. It does not have to be assigned to a

variable first. For instance:

main ()

Printout (SomeValue ());

/***********************************/

Printout (a) /* Print the value */

int a;

printf ("%d",a);

/***********************************/

SareValue () /* Return an arbitrary no */

return (42);

This often gives a concise way of passing a value to a

function.

11 - PARAMETERS & FUNCTIONS

Listing 11.1. Value parameters.

/***/
/*

/* Value Parameters

/*

*/

*/

*/

/***/
/* Toying with value parameters */

#include <stdio.h>

/***/
/* Level 0 */

/***/
main () /* Example of value parameters */

int i,j;

double x,x_plus_one();

char ch;

i 0 i

x 0;

printf (" %f", x_plus_one(x));

printf (" %f", x);

j = resultof (i);

printf (" %d", j);

/***/
/* level 1 */

/***/
double x_plus _one (x)

double x;

x = x + l;

return (x);

I* .Adi one to x ! */

C - A DABHAND GUIDE

/***/

resultof (j) /* Work out some result */

int j;

return (2*j + 3); /*why not ... */

Listing 11.2. More value parameters.

/***/

/*

/* Program:More Value Parameters

/*

*/

*I
*/

/***/

/* Print out mock exam results etc */

#include <stdio.h>

/***/

main () /* Print out exam results */

int pupill,pupil2,pupil3;

int pprl,ppr2,ppr3;

float penl,pen2,pen3;

pupill 87;

pupil2 45;

pupil3 12;

pprl 200;

ppr2 230;

ppr3 10;

penl l;

pen2 2;

pen3 2 0;

analyse(pupill,pupil2,pupil3,pprl,

ppr2,ppr3,penl,pen2,pen3);

/***/

II

I I - PARAMETERS & FUNCTIONS

analyse (pl,p2,p3,wl,w2,w3,bl,b2,b3)

int pl,p2,p3,wl,w2,w3;

float bl,b2,b3;

printf ("Pupil 1 scored %d percent\n",pl);

printf ("Pupil 2 scored %d percent\n",p2);

printf ("Pupil 3 scored %d percent\n",p3);

printf ("However: \n");

printf ("Pupill wrote %d sides of paper\n",wl);

printf ("Pupil2 wrote %d sides\n",w2);

printf ("Pupil3 wrote %d sides\n",w3);

if (w2 > wl)

printf ("Which just shows that quantity");

printf ("does not imply quality\n");

printf ("Pupill used %f biros\n",bl);

printf ("Pupil2 used %f \n", b2) ;

printf ("Pupil3 used %f \n",b3);

printf ("Total paper used = %d" ,

total(wl,w2,w3));

/***/

total (a, b, c) /* add up total */

int a,b,c;

return (a+ b + c);

II

C - A DABHAND GUIDE

•

Variable Parameters
A word of warning! you may wish to omit this

section until you have read about 'pointers and

operators'. One way to hand information back is to

use the return() function which was examined in

Chapter 10 . This function is slightly limited,

however, in that it can only hand the value of one

variable back at a time . There is another way of

handing back values which is less restrictive, but

more awkward than this. This is by using a special

kind of parameter, often called a variable parameter.

It is most easily explained with the aid of an

example:

#include <stdio.h>

main ()

{ int i,j;

GetValues (&i,&j);

printf ("i = %d and j

)

%d " , i, j)

/***********************************/

GetValues (p,q)

int *p,*q;

*p 10;

*q 20;

11 - PARAMETERS & FUNCTIONS

To fully understand what is going on, this program

requires a knowledge of pointers and operators,

which are covered in later chapters, but a brief

explanation can be given here, so that the method

can be used.

There are two new things to notice about this

program: the symbols & and *.The ampersand

symbol (&) should be read as 'the address of .. .' .

The star symbol(*) should be read as 'the contents

of the address .. .' . This is easily confused with the

multiplication symbol (which is identical). The

difference is only in the context in which the symbol

is used. Fortunately, this is not ambiguous since

multiplication always takes place between two

numbers or variables, whereas the 'contents of a

pointer' applies only to a single variable and the star

precedes the variable name.

Figure 11.2 P1issi.ng VR-riR-bles

Values can go either way Scale Dimensions() is
just connected to the variables in main() directly .

•

C - A DAB HAND GUIDE

II

So, in the program just mentioned, it is not the

variables themselves which arc being passed to the

procedure but the addresses of the variables. In

other words, information about where the variables

arc stored in the memory is passed to the function

GctValucs(). These addresses arc copied into two

new variables p and q, which arc said to be pointers

to i and j. So, with variable parameters, the function

docs not receive a copy of the variables themselves,

but information about how to get at the original

variable which was passed. This information can be

used to alter the 'actual parameters' directly and this

is done with the star operator:

*p = 10;

means make the contents of the address held in p arc

equal to 10. Recall that the address held in pis the

address of the variable i, so this actually reads: make

i equal to 10 . Similarly:

*q = 20;

means make the contents of the address held in q

equal to 20 . Other operations arc also possible (and

these arc detailed in the chapter on pointers) such as

finding out the value of i and putting it into a new

variable, say, a:

int a;

a = *p; /* is equivalent to a = i */

Notice that the star symbol is required in the

declaration of these parameters.

11 - PARAMETERS & FUNCTIONS

Listing 11.3. Variable parameters.

/***/

/*

/*Program

/*

Variable Parameters
*I
*/

*I
/***/

/* Scale some measurements on a drawing, say */

#include <stdio.h>

/***/

main () /* Scale measurements*/

{ int height,width;

height = 4;

width = 5;

ScaleDimensions (&height,&width);

printf ("Scaled height= %d\n",height);

printf ("Scaled width= %d\n",width);

/ ***/

ScaleDimensions (h,w)/* return scaled values */

int *h, *w;

int hscale 3;

int wscale 1;

*h *h * hscale;

*w *w * wscale;

/* scale factors */

•

C - A DABHAND GIBDE

•

Questions:
1) Name two ways that values and results can be

handed back from a function.

2) Where are parameters declared?

3) Can a function be used directly as a value

parameter?

4) Does it mean anything to use a function directly

as a variable parameter?

5) What do the symbols * and & mean when they

are placed in front of an identifier?

6) Do actual and formal parameters need to have

the same names?

II

m Scope:
Local & Global

Where a Program's Fingers
can't Reach
From the computer's point of view, a C program is

nothing more than a collection of functions and

declarations. Functions can be thought of as sealed

capsules of program code which float on a

background of 'white space' (which might be called

the 'global white space') and are connected together

by means of function calls. 'White space' is the name

given to the white of an imaginary piece of paper

upon which a program is written, in other words the

spaces and new line characters which are invisible to

the eye. The 'global white space' is only the gaps
between functions, not the gaps inside function~.

C - A DABHAND GUIDE

•

Thinking of functions as sealed capsules is a useful

way of understanding the difference between global

and local objects and the whole idea of 'scope' in a

program .

Global Variables
Global variables are declared in the white space

between functions. If every function is a ship

floating in this sea of white space, then global

variables are data storage areas which also float in

this sea and can enter any ship and also enter

anything inside any ship (see figure 12.1). Global

variables are universal or 'global' (the meaning

comes from the phrase 'true over the whole globe of

the world') .

Global variables are created when a program is

started and are not destroyed until the program

stops. They can be used anywhere in a program,

there is no restriction about where they can be used.

Local Variables
Local variables are more interesting. They can't

enter just any region of the program. This is because

they are trapped inside blocks. To use the ship

analogy again. Imagine that on board every ship (ie,

inside every function), there is a large swimming

pool on which many toy ships float, then local

variables work anywhere in the swimming pool,

(inside any of the toys ships),

12 - SCOPE: LOCAL & GLOBAL

>>

\ main/

~~
main (

>> >> j \:.__f_u_nc_ti_on_1 _,/ \ function 2 /

~~
/* _____ /*

function 1 (

j
/* /*

function 2 (
{
}

/* /*

Figure 12.1.Nesting.

function 1 ()
{

/*block*/
{

but can't get out of the large ship into the wide

beyond. The swimming pool is just like a smaller

sea, but one which is restricted to being inside a

particular function. Every function has its own

swimming pool! The idea can be taken further too.

What about even smaller swimming pools onboard

the toy ship (ie, functions or blocks inside the
functions!)?

•

C - A DAB HAND GUIDE

•

/* Global white space "sea" */

function ()

/* On board ship */

/* On board a toy ship */

The same rules apply for the toy ships. Variables can

go anywhere inside them but they cannot get out.

They just can't escape their block braces ().

Whenever a pair of block braces is written into a

program, it is possible to make variable declarations

inside the opening brace as follows:

int locali;

char localch;

/* statements */

These variables do not work outside the braces.

They are only created when the opening brace is

encountered and they are destroyed when the

closing brace is executed, or when control jumps out

of the block. Because they only work in this local

area of a program, they are called local variables. It is

a matter of style and efficiency to use local variables

when it does not matter whether variables are

preserved outside of a particular block, because the

12 - SCOPE: WCAL & GLOBAL

system automatically allocates and disposes of them.

The programmer doesn't have to think about this at

all.

Where a variable is and is not defined is called the

scope of that variable. It tells a programmer what a

variable's horiwns are!

lntership Communication:

Parameters
If functions were sealed capsules and no local

variables could ever communicate with other parts of

the program, then functions would not be very

useful. This is why parameters are allowed.

Parameters are a way of communicating local

variables to other functions without letting them

out! Value parameters (see last chapter) make copies

of local variables without actually using the originals.

The copied parameter is a local variable in another

function.

Notice that in this example, ifthere are two variables

of the same name, which are both defined in the

same place ('c' in the example below) then the more

local one wins . That is, the last variable to be

defined takes priority.

Listing 12.1. Scope: the Cllled capsules.

/***/

I*
/* SCOPE

I*

THE CLLLED CAPSULES

*/

*/

*/

/***/

#include <stdio.h>

/***/

•

C - A DAB HAND GUIDE

main ()

{ int a = 1, b 2, c 3;

if (a -- 1)

{ int Ci

c = a + b;

printf ("%d", c);

handdown (a,b);

printf ("%d",c);

/***/
handdown (a,b)

int a,b;

/* Some function */

•

Style Note
Some people complain about the use of global

variables in a program. The main complaint is that it

is difficult to see what information is being used by a

function unless all that information is passed as

parameters. A way to make this clear, is to write

global variables in capital letters only, while writing

the rest of the variables in mainly small letters.

int GLOBALINTEGER;

int local integer;

This allows global variables to be easily spotted.

Another reason for avoiding global variables is it is

easier to debug a program if only local variables are

12 - SCOPE: LOCAL & GLOBAL

used. The reason is that when a function capsule is

tested and sealed, it can be guaranteed to work in all

cases, provided it is not affected by any other

functions from outside. Global variables punch holes

in the sealed function capsules because they allow

bugs from other functions to creep into tried and

tested ones. An alert and careful programmer can

usually control this without difficulty.

The following guidelines may help you to decide

whether to use local or global data:

l) Always think of using a local variable first. Is it

impractical? Yes, if it means passing dozens of

parameters to functions, or reproducing a lot of

variables . Global variables will sometimes tidy

up a program.

2) Global variables generally make the final code

longer, as they are stored in a program object

file. If this is important, consider global

variables. A program should rarely use entirely

global variables, however!

3) Local variables are marginally more efficient

than global variables and often make the flow of

data in a program clearer.

4) The preference in this book is to use local

variables for all work, except where a program

centres around a single data structure .

Significant data structures are always defined

globally.

Advanced Scope and Style
All the programs in this book longer than a couple

of lines, are written in an unusual way - with a

'levelled structure' (see Appendix A) . There are

several good reasons for this. One is that the sealed

•

C - A DAB HAND GUIDE

capsules are shown to be sealed, by using a comment

bar between each function.

/**************************************/

Another good reason is that any function hands

parameters down by only one level at a time, and

that any return() statement hands values up a single

level. The global variables are kept to a single place

at the head of each program so that they can be seen

to reach into everything.

Questions
1) What is a global variable?

2) What is a local variable?

3) What is meant by calling a block (enclosed by

curly braces ()) a 'sealed capsule'?

4) Do parameters make functions leaky? For

example, do they spoil them by letting the

variables leak out into other functions?

5) Write a program which declares four variables.

Two integer types called i,j which are global and

two float types called x,y which are local inside

the function main(). Then add another function

called "another()" and pass x,y to this function.

How many different storage spaces are used

when this program runs? (Hint: are x,y and their

copies the same?)

11

The
Pre-Processor

Making Programming
Versatile
C is unusual in that it has a 'pre"processor' . As the

name suggests, the pre-processor is a phase wr.ich

occurs prior to compilation of a program. The pre­

processor has two main uses. First, it allows external

files (such as header files for standard libraries) to be

included and second, it allows 'macros' to be

defined. Pre-processor commands are given outside

functions in the global white space area and are

distinguished by the hash symbol #. One example of

this has already been encountered for the standard

library file stdio.h:

C - A DABHAND GIBDE

•

#include <stdio.h>

is a command which tells the pre-processor to treat

the file stdio.h as if it were actually part of the

program text. In other words, to include it as part of

the program to be compiled.

Macros are words which can be defined to stand in

place of something complicated, they are a way of

reducing the amount of typing in a program and a

way of putting long, ungainly pieces of code into

short words. For example, the simplest use of

macros is to give constant values meaningful names:

#define telephnum 720663

This allows the programmer to use the word

'telephnum' in the program to mean the number

720663. In this particular case, the word is clearly

not any shorter than the number it will replace, but

it is more meaningful and would make a program

'read more naturally', than if the raw number were

used . For instance, a program which deals with

several different fixed numbers like a telephone

number, a postcode and a street number, could

write :

currentnurnber

currentnurnber

currentnurnber

instead of :

currentnurnber

currentnurnber

currentnurnber

telephnum;

postcode;

streetnum;

720663;

345;

14

Using the macros makes the actions much clearer

and allows the programmer to forget about what the

numbers actually are. It also means that a program is

easy to alter because to change a telephone number,

or whatever, it is only necessary to change the

13 - THE PRE-PROCESSOR

definition, not to re-type the number in every single

instance.

Users of Pascal might easily gain the wrong

impression of a macro from this example, because

they may compare it to Pascal's constants. The

important feature of macros is that they are not

merely numerical constants which are referenced at

compile time, but are strings which are physically

replaced before compilation by the pre-processor!

This means that almost anything can be defined:

#define sum 1 + 2 + 3 + 4

would allow 'sum' to be used instead of 1+2+3+4.

Or:

#define string "Mary had a little lamb ... "

would allow a commonly used string to be called by

the identifier 'string' instead of typing it out afresh

each time. The idea of a define statement then is:

#define macroname definition on rest of line

Macros can't define more than a single line to be

substituted into a program but they can be used

anywhere, except inside strings. Anything enclosed

in string quotes is assumed to be complete by the

compiler.

Some macros are defined already in the file stdio.h

such as:

EOF - the end of file character (= -1 for instance)

NULL - the null character (zero) = 0

Note: in UNIX, the # character must be the first
character on a line (no leading spaces) else the
compiler will generate an 'illegal character' error .

•

C - A DABHAND GUIDE

•

#define lnamel la+ b + 89 + 792 I

Before compiling, the preprocessor swaps all
instances of "name" in the text,

and swaps it for the replacement string.

Figure 13.l. The pre-processor.

Macro Functions
A more advanced use of macros is also permitted by

the pre-processor. This involves macros which accept

parameters and hand back values . This works by

defining a macro with some dummy parameter, say

'x'. For example, a macro which is usually defined in

one of the standard libraries is abs() which means

the absolute or unsigned value of a number. For

example:

#define abs (x) ((x) < 0) ? - (x) (x)

13 - THE PRE-PROCESSOR

The result of this is to give the positive (or

unsigned) part of any number or variable . This

would be no problem for a function which could

accept parameters and it is, in fact, no problem for

macros. Macros can also be made to take

parameters. Consider the abs () example . If a

programmer were to write abs(4) then the pre­

processor would substitute four for x. If a program

read abs(i) then the pre-processor would substitute i

for x and so on. There is no reason why macros can't

take more than one parameter. The programmer just

includes two dummy parameters with different

names. See listing 13.1. Notice that this definition

uses a curious operator which belongs to C:

<test> ? <true result> : <false result>

This is little more than a compact way of writing an

if-then-else statement, ideal for macros. First the test

is made. If the test is true then the first statement is

carried out, otherwise the second is carried out. As a

memory aid, it could be read as:

i£ <test> ili:n <t.nE result> clre <false result>

Don't be confused by the above statement which is

meant to show what a programmer might think. It is

not a valid C statement . C can usually produce

much more efficient code for this construction than

for a corresponding if-else statement.

Using Macros with
Parameters
It is tempting to forget about the distinction

between macros and functions, thinking that it can

be ignored. To some extent this is true for absolute

beginners, but it is not a good idea as you become

more experienced with C. It should always be

•

C - A DABHAND GUIDE

remembered that macros are substituted whole at

every place where they are used in a program. This is

potentially a very large amount of repetition of code.

The advantage of a macro, however, is speed. No

time is taken up in passing control over to a new

function, because control never leaves the home

function when a macro is used. It simply makes the

function a bit longer. There is a limitation with

macros though, function calls can't be used as their

parameters, such as:

abs (function())

This will not work. Only variables or number

constants will be substituted. Macros are also

severely restricted in complexity by the limitations of

the pre-processor. It is simply not viable to copy

complicated sequences of code all over programs.

Choosing between functions and macros is a matter

of personal judgement. No simple rules can be

given. In the end (as with all programming choices)

it is experience which counts towards the final

program.

Listing 13.1. Macro demonstration.

/***/

/*

/* MACRO DEMONSTRATION

/*

*/

*/

*/

/***/

#include "stdio.h"

#define stringl "A macro definition\n"

#define string2 "must be all on one line! !\n"

#define expression 1 + 2 + 3 + 4

#define expr2 expression + 10

((x) < 0) ? -(x) (x)

(a < b) ? (b) (a)

#define abs(x)

#define max(a,b)

#define biggest(a,b,c) (rrax (a, b) < c) ? (c) : (rrax (a, b))

•

13 - THE PRE-PROCESSOR

/***/

main () /* No #definitions inside functions! */

printf (stringl);

printf (string2);

printf ("%d\n",expression);

printf ("%d\n",expr2);

printf ("%d\n",abs(-5));

printf ("Biggest of 1 2 and 3 is %d",biggest(l,2,3));

Note About #include
When an include statement is written into a

program, it is a sign that a compiler should merge

another file ofC programming with the current one.

However, the #include statement is itself valid, so

this means that a file which is included may contain

#includes itself. The includes are then said to be

'nested'. This often makes includes simpler.

Other Pre-processor

Commands
There are a handful more pre-processor commands

which largely can be ignored by the beginner. They

are commonly used in 'include' files to make sure

that things are not defined twice . Note : 'True' has

any non zero value in C. 'False' is zero.

#undef This undefines a macro, leaving the

name free.

#if This is followed by some expression on

the same line. It allows conditional

•

C - A DABHAND GUIDE

#ifdef

#ifndef

#else

#endif

#line

compilation, or compilation only if

some condition is true.

This is followed by a macro name. If

that macro is defined then this is true.

This is followed by a macro name. If

that name is not defined then this is

true.

This is part of an #if, #ifdef, #ifudef pre­

processor statement.

This marks the end of a pre-processor

statement.

Has the form:

#line constant "filename"

This is for debugging mainly. This statement causes

the compiler to believe that the next line is line

number (constant) and is part of the file (filename).

#error This is a part of the proposed ANSI

standard. It is intended for debugging.

It forces the compiler to abort

compilation.

Listing 13.2. To compile or not.

/***/

/* To compile or not to compile */

/***/

#define somedefinition 6546

#define choice 1 /* Choose this before compiling */

/***/

#if (choice == 1)

#define optionstring "The prograrmer selected this"

#define ditto "instead of

#else

#define optionstring "The alternative"

#define ditto "i.e. This ! "

II

13 - THE PRE-PROCESSOR

fond if

/***/
#ifdef somedefinition

#define whatever "Something was defined!"

#else

#define whatever "Nothing was defined"

#endif

/***/
main ()

printf (optionstring);

printf (ditto);

Questions:
1) Define a macro called 'birthday' describing the

day of the month upon which your birthday

falls.

2) Write an instruction to the pre-processor to

include to maths library 'math .h'.

3) A macro is always a number. True or false?

4) A macro is always a constant. True or false

•

C - A DAB HAND GUIDE

•

m Pointers

Making Maps of Data
You have a map (a plan) of the computer's memory.

You need to find that essential piece of information

which is stored at some unknown location. How will

you find it? You need a pointer!

A pointer is a special type of variable which holds the

addresse or location of another variable. Pointers do,

in a sense, point to variables' locations by keeping a

record of the spot at which they were stored.

Pointers to variables are easily made in programs, by

recording the actual machine address at which a

variable is stored. To make a pointer to a variable,

the variable's address must be known . It is always

possible to find the address of a piece of storage in C

using the special '&' operator. For instance: if

C - A DAB HAND GUIDE

•

'location' were a float type variable, find a pointer to

it called 'location_ptr'.

float location;

float *location_ptr,*address;

location_ptr &(location);

I* or */

address= &(location);

The declarations of pointers look a little strange at

first. The star symbol (*) which stands in front of

the variable name is C's way of declaring that

variable to be a pointer. The four lines above make

two identical pointers to a floating point variable

called 'location', one of them is called location_ptr

and the other is called address. The point is that a

pointer is just a place to keep a record of the address

of a variable, so they are really the same thing.

If you believe in high-level languages, it is probably

a source of wonder why on earth anyone should ever

want to know the address of these variables. Having

gone to the trouble to design a high-level language,

like C, in which variables can be given elegant and

meaningful names: it seems like a step in a

backward's direction to want to be able to find out

the exact number of the memory location . The

whole point of variables, after all, is that it is not

necessary to know exactly where information is really

stored.

This complaint is not quite fair though. It is

certainly rare to want to know the actual number of

the memory location at which something is stored.

That would really make the idea of a high-level

language a bit pointless. The idea behind pointers is

that a high-level programmer can now find out the

exact location of a variable without ever having to

know the actual number involved. Remember:

A pointer is a variable which holds the address

of the storage location for another given

variable.

Pointers prove invaluable for building complex

data structures.

C provides two operators & and * which allow

pointers to be used in many versatile ways.

& and*
The & and * operators have already been used once

in chapter 11 to hand back values to variable

parameters. They can be read in a program to have

the following meanings:

& the address of ...

* the contents of the address held in ...

Another way of saying the second of these is:

* the contents of the location pointed to by ...

This reinforces the idea that pointers reach out an

imaginary hand and point to some location in the

memory and it is more usual to speak of pointers in

this way. The two operators * and & are always

written in front of a variable, clinging on, so that

they refer without doubt to that one variable. For

instance:

&x The address at which the variable x is

stored.

*ptr The contents of the variable which 1s

pointed to by ptr.

14 - POINTERS

•

C - A DAB HAND GUIDE

•

The following short example might help to clarify

the way in which they are used:

int somevar; I* 1 */

int *ptr_to_somevar; /* 2 */

somevar = 42; /* 3 */

ptr_to_somevar = &(somevar); /* 4 */

printf ("%d", *ptr_to_somevar); /* 5 */

ptr_to_somevar = 56; / 6 */

The key to these statements is as follows:

1) Declare an int type variable called somevar.

2) Declare a pointer to an int type called

ptr_to_somevar. The * which stands in front of

ptr_to_somevar is the way C declares

ptr_to_somevar as a pointer to an integer, rather

than an integer.

3) Let somevar take the value 42.

4) This gives a value to ptr_to_somevar. The value

is the address of the variable somevar. Notice

that only at this stage does is become a pointer

to the particular variable somevar. Before this, its

fate is quite open. The declaration (2) merely

makes it a pointer which can point to any integer

variable which is around.

5) Print out 'the contents of the location pointed

to by ptr_to_somevar' in other words, somevar

itself. So this will be just 42.

6) Let the contents of the location pointed to by

ptr_to_somevar be 56. This is the same as the

more direct statement:

somevar = 56;

Addresses

Pointer to x

float .. ptr
ptr=&X

Figure 14.l. Pointers tind 11tiritibles.

Uses for Pointers
You may create pointers which point to any type of

data whatsoever. They are always declared with the *
symbol. Some examples are given next.

int i,*ip;

char ch,*chp;

short s,*sp;

float x,*xp;

double y,*yp;

Pointers are extremely important objects in C. They

are far more important in C than in Pascal or BASIC

(PEEK and POKE are like pointers) . In particular

they are vital when using strings or arrays or 'linked

lists' - in fact these uses are important so they have

chapters of their own.

One example of the use of pointers is the C input

function, which is called scanf() . It is looked at in

detail in the next section . scanf() is for getting

14 - POINTERS

Memory Map

•

C - A DABHAND GmDE

•

information from the keyboard. It is a bit like the

reverse of printf(), except that it uses pointers to

variables, not variables themselves. For example: to

read an integer:

int i;

scanf ("%d",&i);

or alternatively:

int *i;

scanf ("%d", i);

The & sign or the * sign is vital. If it is forgotten,

scanf will probably corrupt a program. This is one

reason why this important function has been ignored

up to now.

Assembly language programmers might argue that

there are occasions when it would be nice to know

the actual address of a variable as a number. One

reason why you might want to know this, would be

for debugging. It is not often a useful thing to do,

but it is not inconceivable that in developing some

program a programmer would want to know the

actual address. The & operator is flexible enough to

allow this to be found. It could be printed out as an

integer:

<type> *ptr:

printf ("Address = %d", (int) ptr);

Pointers and Initialisation
Something to be wary of with pointer variables, is

the way that they are initialised. It is incorrect,

logically, to initialise pointers in a declaration . A

compiler will probably not prevent this, however,

because there is nothing incorrect about it as far as

syntax is concerned .

Think about what happens when the following

statement is written. This statement is really talking

about two different storage places in the memory:

int *a = 2;

First of all, what is declared is a pointer. Space for a

'pointer to int' is allocated by the program, and to

start off with that space will contain garbage

(random numbers) because no statement like :

a = &someint;

has yet been encountered which would give it a

value. It will then attempt to fill the contents of

some variable, pointed to by a, with the value two.

This is doomed to failure, a only contains garbage so

the two could be stored anywhere. There may not

even be a variable at the place in the memory which

a points to. Nothing has been said about that yet.

This kind of initialisation cannot hope to work and

will most likely crash the machine or corrupt some

other data.

Listing 14.1. Swapping pointers.

14 - POINTERS

/***/

/*

/* Swapping Pointers

/*

*I
*/

*I
/***/

/* Program swaps the variables which a,b */

/* point to. Not pointless really ! */

#include <stdio.h>

main ()

int *a,*b,*c;

int A,B;

/* Declr ptrs */

/* Declare storage */

II

C - A DABHAND GUIDE

A

B

12;

9;

a = &A;

b &B;

/* Initialise storage */

/* Initialise pointers */

printf ("%d %d\n",*a,*b);

c = a;

a = b;

b c;

printf (" %d %d\n",*a,*b);

II

/* swap pointers */

14 - POINfERS

COMMAND "Pointers" "Variables"

a=&A; a=&A I ~I A=12 I
b=&B; I b=&B I ~I B=9 I
~ ?

C=a; a=&B A=12 I
a=b; b=&B B=9 I

C=&A

b=c; a=&B A=12 I
b=&A B=9 I
C=&A

Pointers a and b are swapped

Figure 14.2.Pointers ex1imple.

C -A DABHAND GUIDE

II

Types, Casts and Pointers
It is tempting but incorrect to think that a pointer to

an integer is the same kind of object as a pointer to a

floating point object, or any other type for that

matter. This is not necessarily the case. There are

occasions, however, when it is actually necessary to

convert one kind of pointer into another. This

might happen with a type of variable called 'unions'

or even functions which allocate storage for special

uses. These objects are met later on in this book.

When this situation comes about, the cast operator

has to be used to make sure that pointers have

compatible types when they are assigned to one

another. The cast operator for variables (see Chapter

10) is written in front of a variable, to force it to be

a particular type:

(type) <variable>

For pointers it is:

(type *) <pointer>

Look at the following statement:

char *ch;

int *i;

i = (int *) ch;

This copies the value of the pointer ch to the

pointer i. The cast operator makes sure that the

pointers are in step and not 'talking at cross

purposes'. The reason that pointers have to be 'cast'

into shape is a bit subtle, and depends upon

particular computers. In practice, it may not actually

do anything, but it is a necessary part of the syntax

ofC.

Pointer casting is discussed in greater detail in the

chapter on Structures and Unions.

Questions:
1) What is a pointer?

2) How is a variable declared to be a pointer?

3) What data types can pointers 'point to'?

4) Write a statement which converts a pointer to a

character into a pointer to a 'double' type.

(This is not as pointless as it seems. It is useful

in dealing with unions and memory allocation

functions) .

5) Why is it incorrect to declare: float *number =

2 .65;?

14 - POINTERS

•

C - A DAB HAND GlnDE

•

m Standard 1/0

Talking to the User
Getting information in and out of a computer is the

most important thing that a program can do .

Without input and output, computers would be

quite useless.

C treats all its output as though it were reading or

writing to different files . Normally, you would think

of a file as a thing on a disc which has to be opened

and closed. A file is really just a place where

information comes from or can be sent to. Some

files can only be read, some can only be written to,

others can be both read from and written to . In

other situations files are called 'I/O streams'.

C has three 'unusual' files which are always open

and ready for use. They are called stdin, stdout and

•

C - A DABHAND GUIDE

•

stderr, meaning standard input, standard output and

standard error file . Stdio is the input which usually

arrives from the keyboard of a computer. Std out is

usually the screen. Stderr is the route by which all

error messages pass: usually the screen. This is only

'usually' because the situation can be altered. In fact,

what happens is that these files are just handed over

to the local operating system to deal with, and it

chooses what to do with them. Usually this means

the keyboard and the screen, but occasionally this

might be redirected to a printer, to a disc file or to a

modem and so on. It depends upon how the user

runs the program.

The keyboard and screen are referred to as the

standard input/output files because this is what

most people use, most of the time. Also the

programmer never has to open or close these,

because C does it automatically. The library stdio.h

provides some functions for working with stdio and

stdout, which are simplified versions of the functions

that can be used on any kind of file. In order of

importance, they are:

printf

scanf

getchar

putchar

gets

puts

FILE
POINTERS

std in (others ...)

C PROGRAM

Figure 15.1. Routes to tindfrom ti C progrtim.

The printf Function
The printf function has been used widely up to now

for output because it provides a neat and easy way of

printing text and numbers to stdout (the screen).

Its name is meant to signify 'print-formatted'

because it gives the user control over how text and

numerical data are to be set out on the screen.

Making text look good on screen is important in

programming. C makes this easy by allowing the

programmer to decide how the text will be printed

in the available space. The printf function has

general form :

printf ("string ... ",<variables>,<nurrbers>)

It contains a string with some blank 'fields', which is

not optional and it contains any number of

parameters to follow: one for each blank 'field' in

the string.

15 - STANDARD 1/0

•

C - A DABHAND GUIDE

•

The blank 'fields' are gaps which the programmer

can introduce into the string, which will then be

filled in by numbers or by the contents of variables

and so on before the final version is printed out.

These fields are introduced by using a per cent (%)

character, followed by some coded information,

which says something about the size of the blank

space and the type of number or string which will be

filled into that space. The string is often called the

'control string' because it contains these control

characters.

The simplest use of printf is to just print out a string

with no blank fields to be filled:

printf ("A pretty ordinary string .. ");

printf ("Testing 1,2,3 ... ");

The next simplest case which has been used before

now, is to print out a single integer number:

int number = 42;

printf ("%d", number);

The two can be combined as follows:

int number = 42;

printf ("Some number= %d",number);

The result of this last example is to print out the

following on the screen:

Some number = 42

The text cursor is left pointing to the character just

after the two. Notice the way that o/od is swapped for

the number 42. The %d defines a 'field' which is

filled in with the value of the variable.

There are other kinds of data apart from integers!

Any kind of variable can be printed out with printf.

o/od is called a conversion character for integers

because it tells the compiler to treat the variable to

be filled in as an integer. So make sure it is an

15 - STANDARD 1/0

integer or things will go wrong! Other characters are

used for other kinds of data. Here is a list of the

different letters for printf:

d Signed denary integer

u Unsigned denary integer

x Hexadecimal integer

0 Octal integer

s String

c Single character

f Fixed decimal floating point

e Scientific notation floating point

g Use for e, whichever is shorter

The best way to learn these is to experiment with

different conversion characters . The example

program below and its output below give some

impression of how they work:

Listing 15.1. Conversion characters and types of printf.

/***/

/*

/* printf Conversion Characters and Types

/*

*/

*/

*I
/***/

#include "stdio.h"

main ()

int i = -10;

unsigned int ui 10;

float x = 3.56;

double y = 3.52;

char ch = 'z';

char *string_ptr "any old string";

•

C - A DAB HAND GUIDE

printf ("signed integer %d\n", i);

printf ("unsigned integer %u\n",ui);

printf ("This is wrong! %u",i);

printf ("See what happens when you get the");

printf ("character wrong!");

printf ("Hexadecimal %x %x\n",i,ui);

printf ("Octal %0 %0\n",i,ui);

printf ("Float and double

printf (" ditto

printf (" ditto

printf ("single character

printf ("whole string ->

Output
signed integer -10

unsigned integer 10

%f %f\n", x, y) ;

%e %e \n", x, y) ;

%g %g\n", x, y) ;

%c\n", ch);

%s",string_ptr);

This is wrong! 10 See what happens when you get

the character wrong!

Hexadecimal FFFFFFF6 A Octal 37777777766 12 Float

and double

3.560000 3.520000

ditto 3.560000E+OO 3.520000E+OO

ditto 3.560000 3.520000

single character z

whole string -> any old string

•

Formatting with printf
This example program doesn't produce a very neat

layout on the screen. The conversion specifiers in

the printf string can be extended to give more

information. The % and the character type act like

brackets around the extra information. For example:

%-10.3f

is an extended version of %f, which carries some

more information . That extra information takes the

form:

% [-] [fw] [.p] X

where the each bracket is optional and the symbols

inside them stand for the following:

[fw] This is a number which specifies the field

width of this 'blank field'. In other words,

how wide a space will be made in the string

for the object concerned. In fact it is the

minimum field width because if data needs

more room than is written here it will spill

out of the box of fixed size. If the size is

bigger than the object to be printed, the rest

of the field will be filled out with spaces.

[-] If this is included, the output will be left

justified. This means it will be aligned with

the left-hand margin of the field created with

[fw] . Normally all numbers are right justified,

or aligned with the right-hand margin of the

field 'box'.

[.p] This has different meanings depending on the

object which is to be printed. For a floating

point type (float or double) p specifies the

number of decimal places after the point

which are to be printed . For a string it

15 - STANDARD I/O

•

C - A DABHAND GUIDE

•

specifies how many characters are to be

printed.

Some valid format specifiers are listed below:

%10d %2.2f %25.21s %2.6f

The table below helps to show the effect of

changing these format controls. The width of a field

is draw in by using the I bars.

Object to

be printed

42

42

324

-1

-1

'z'

'z'

2 .71828

2 .71828

2.71828

2.71828

2.718

2.718

2 .71828

2 .71828

2.71828

"printf''

"printf''

"printf''

"printf''

"printf"

"printf''

Control Spec. Actual Output

%6d I 421

%-6d 142 I

%10d I 3241

%-lOd 1-1 I

%ld 1-11(overspill)

%3c I zl

%-3c lz I

%10f I 2.718281

%10.2f 2.711

%-10.2f 12.71 I

%2.4f 12.71821(overspill)

%.4f 12.71801

%10.Sf I 2 .718001

%10e 12 .71828e+OOI

%10.2e I 2 .17e+OOI

%10.2g I 2.711

%s lprintfl

%10s I printfl

%2s lprintfl(overspill)

%5.3s I pril

%-5.3s lpri I

%.3s lpril

15 - STANDARD 1/0

Listing 15.2. Multiplication table.

/***/
/*

/* Multiplication Table

/*

*/

*I
*/

/***/

#include <stdio.h>

main () /* Printing in columns */

int i, j;

for (i = 1; i <= 10; i++)

for (j = 1; j <= 10; j++)

{

printf ("%5d",i * j);

printf ("\n");

Output
1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

7 14 21 28 35 42

8 16 24 32 40 48

9 18 27 36 45 54

10 20 30 40 50 60

7 8 9 10

14 16 18 20

21 24 27 30

28 32 36 40

35 40 45 50

42 48 54 60

49 56 63 70

56 64 72 80

63 72 81 90

70 80 90 100

•

C - A DABHAND GUIDE

•

Special Control Characters
Control characters are invisible on the screen. They

have special purposes usually to do with cursor

movement. They are written into an ordinary string

by typing a backslash character (\) followed by some

other character. These characters are listed next:

\b backspace BS

\f form feed FF (also clear screen)

\n new line NL (like pressing RETURN)

\r carriage return CR (cursor to start of line)

\t horizontal tab HT

\v vertical tab

\" double quote

\' single quote character '

\\ backslash character \

\ddd character ddd where ddd is an ASCII code

given in octal or base 8. (See Appendix C).

Questions:
1) Write a program which simply prints out

6.23e+OO.

2) Investigate what happens when you type the

wrong conversion specifier in a program. For

example, try printing an integer with %for a

floating point number with %c. This is bound to

go wrong - but how will it go wrong?

3) What is wrong with the following statements?

a) printf(x);

b) printf ("%d");

c) printf ();

d) printf ("Number = %d");

Hint: if you don't know, try them in a program!!

The scanf Function
scanf is the input function which gets 'formatted

input' from the file stdin (the keyboard). This is a

very versatile function, but it is also very easy to go

wrong with it . In fact, it is probably the most

difficult to understand of all the C standard library

functions!

Remember that C treats its keyboard input as a file.

This makes quite a difference to the way that scanf

works. The actual mechanics of scanf are very similar

to those ofprintfin reverse:

scanf ("string ... ",pointers);

with one important exception - namely that it is not

variables which are listed after the control string, but

pointers to variables . Here are some valid uses of

scanf:

int i;

char ch;

float x;

scanf (" %d %c %f", &i, &ch, &x);

Notice the & characters which make the argument

pointers. Also notice the conversion specifiers which

tell scanf what types of data it is going to read. The

other possibility is that a program might already

have pointers to a particular set of variables, in that

case the & is not needed. For instance:

function (i,ch,x)

int *i;

char *ch;

float *x;

15 - STANDARD I/O

C - A DABHAND GIBDE

•

scanf (•%ct %c %f", i, ch, x);

In this particular case it would actually be wrong to

write the ampersand (&) symbol.

Conversion Characters
The conversion characters for scanf are not identical

to those for printf, and it is much more important to

be precise and totally correct with these, than it is

with printf.

d Denary integer (int or long int)

Id long decimal integer

x Hexadecimal integer

0 Octal integer

h Short integer

f Float type

If long float or double

c Float type

le Double

c Single character

s Character string

The difference between short integer and long

integer can make or break a program . If it is found

that a program's input seems to be behaving

strangely, check these carefully. See the section on

Errors and Debugging for more about this .

How Does scanf 'See' the
Input?
When scanf is called in a program it, checks to see

what is in the input file, that is, it checks to see what

the user has typed in at the keyboard. Keyboard

input is usually buffered. This means that the

characters are held in a 'waiting bay' in the memory

until they are read. The buffer can be thought of as

a part of the input file stdin, holding some characters

which can be scanned through . If the buffer has

some characters in it, scanf will start to look through

these; if not, it will wait for some characters to be

put into the buffer.

It is important to remember that although scanf will

start scanning through characters as soon as they are

in the buffer, the operating system often sees to it

that scanf doesn't get to know about any of the

characters until the user has pressed the RETURN

key on the computer or terminal. If the buffer is

empty scanf will wait for some characters to be put

into it.

To understand how scanf works, it is useful to think

of the input as coming in 'lines'. A line is a group of

characters ending in a new line character '\n'. This

can be represented by a box as follows :

I some . .. chars. 738/. I' \n' I

As far as scanf is concerned, the input is entirely

made out of characters. If the programmer says that

an integer is to be expected by using the '%d'

conversion specifier, then scanf will try to make

sense of the characters as an integer. In other words,

it will look for some characters which make up a

15 - STANDARD 1/0

•

C - A DABHAND GUIDE

•

valid integer, such as a group of numbers all

between zero and nine. If the user says that floating

point type is expected, then it will look for a number

which may or may not have a decimal point in it. If

the user just wants a character, then any character

will do!

First Account of scanf
Consider the example which was given above.

int i;

char ch;

float x;

scanf ("%d %c %f", &i, &ch, &x);

Here is a simplified, ideal view of what happens.

scanf looks at the control string and finds that the

first conversion specifier is '%d' which means an

integer. It then tries to find some characters which

fit the description of an integer in the input file. It

skips over any white space characters (spaces, new

lines) which do not constitute a valid integer until it

matches one. When it has matched the integer and

placed its value in the variable 'i', it carries on and

looks at the next conversion specifier '%c', which

means a character. It takes the next character and

places it in 'ch'. Finally, it looks at the last

conversion specifier '%f, which means a floating

point number, and finds some characters which fit

the description of a floating point number. It passes

the value on to the variable 'x' and then quits.

This brief account of scanf does not tell the whole

story by a long way! It assumes that all the

characters were successfully found and that

everything went smoothly: something which very

seldom happens in practice!

The Dangerous Function
What happens if scanf doesn't find an integer or a

floating point number? The answer is that it will quit

at the first item it fails to match, leaving that

character and the rest of the input line still to be

read in the file. At the first character it meets which

does not fit in with the conversion string's

interpretation, scanf aborts and control passes to the

next C statement. This is why scanf is a 'dangerous'

function - because it can quit in the middle of a task

and leave a lot of surplus data around in the input

file. These surplus data simply wait in the input file

until the next scanf is brought into operation, where

they can also cause it to quit. It is not safe,

therefore, to use scanf by itself - without some

check that it is working successfully.

scanf is also dangerous for the opposite reason.

What happens if scanf doesn't use up all the

characters in the input line before it satisfies its

needs? Again the answer is that it quits and leaves

the extra characters in the input file stdin for the

next scanf to read, exactly where it left off. So if the

program was meant to read data from the input and

couldn't, it leaves a mess for something else to trip

over.

scanf can get out of step with its input, if the user

types something even slightly out of line. It can also

be responsible for the most bizarre of errors which

seem totally unrelated to input. It should be used

with caution.

15 - STANDARD 1/0

•

C - A DABHAND GUIDE

•

Keeping scanf Under

Control
scanf may be dangerous in sloppy programs which

do not check their input carefully, but it is easily

tamed by using it as just a part of a more

sophisticated input routine, and sometimes even

more simply with the aid of a very short function

which can be incorporated into almost any program

as follows :

skipgarb () /* skip garbage corrupting scanf */

while (getchar() != '\n')

The action of this function simply is to skip to the

end of the input line so that there are no characters

left in the input. It can't stop scanf from getting out

of step before the end of a line, because no function

can stop the user from typing in nonsense!

So to get a single integer, for instance, a program

could try:

int i;

scanf ("%d", &i);

skipgarb();

The programmer must police user-garbage

personally by using a loop to the effect of:

while (inputisnonsense)

printf ("Get your act together out there! !\n");

scanf (..)

skipgarb();

15 - SfANDARD 1/0

It is usually as well to use skipgarb every time. Some

safe input routines are given in Chapter 29.

Examples
Here are some example programs with example runs

to show how scanf either works or fails (Note figures

15 .2 and 15.3).

Listing 15.3

/***********************************/

/* Example 1 *I
/***********************************/

#include <stdio.h>
Example 1

Input: 1 x2.3 [RETURN]
Scan f ("o/od o/oc %r, &I. &ch, &x);

FIRST CONVERSION (o/od) - matches only characters which could be integer

I 3 I ·,n· I
f

matches i =1 (stops at 'x')

SECOND CONVERSION (%C) - matches any characters

2 3 '\n'

(stops after 1 character)

THIRD CONVERSION (%1) - matches only floating point type characters

I l~i 1 111~1 11 g ! , ; ! ! !!II '\n' I
t

matches x = 2.3 (Leaves a '\n' character to be read)

Figure 15.2 - sctinf Exiimple 1

II

C - A DABHAND GUIDE

•

main ()

int i = 0;

char ch

float x

'*' . ,
0;

scanf ("%d %c %f",&i,&ch,&x);

printf ("%d %c %f\n",i,ch,x);

This program just waits for a line from the user and

prints out what it makes of that line. Notice the way

in which scanf 'misunderstands' what the user has

typed in and also the values the variables had before

the scanf function.

Input : lx2.3

Output: 1 x 2.300000

The input gets broken up in the following way:

I 1 I' x' I 2. 3 I' \n' I

In this example everything works properly. There are

no spaces to confuse matters. It is simple for scanf to

see what the first number is because the next

character is 'x', which is not a valid number.

Input : 1 x 2.3

Output: 1 0.000000

11 I ' ' I <break> Ix 2 . 3 I

In this example the integer is correctly matched as

one. The character is now a space and the 'x' is left

in the stream. The 'x' does not match the

description of a float value so scanf terminates,

leaving 'x 2.3' still in the input stream .

Input :

Output: 0 * 0.000000

I ' • ' I <break>

Example 2

Input: 6x2.36
Scan I ("%d %c %!", &i, &ch, &x);

start I 6 I

f
file position

x 2 3

FIRST CONVERSION (%d)- matches valid integer only

15 - STANDARD 1/0

6 1 ~·I

2 I · I 3 I 6 I ·1n· I
f

matches i =6 (stops at the space)

SECOND CONVERSION (%C) - matches next character

f
matches ch =''(space) (stops after 1 character)

THIRD CONVERSION (%1) - Looks for floating point

11111
1

11111111111
1111 x I 2 I . I 3 s I ·,n·I

f
No characters matched. x is not valid floating point type.
This attempt leaves all the unshaded characters in the input file.

Figure 15.3 -minf F..xtimple 2

•

C - A DABHAND GUIDE

Listing 15.4

A single full-stop (period) and scanf quits straight

away because it looks for an integer. It leaves the

whole input line (which is just the period '.') in the

input stream.

/***/

/* Example 2 */

/***/

#include <stdio.h>

main ()

int i = 0;

char ch

float x

'*' ,ch2,ch3;

O;

scanf ("%d %c %f", &i, &ch, &x);

scanf ("%c %c", &ch2,&ch3);

printf ("%d %c %f\n %c %c");

•

The input for this program is:

6 x 2.36

and the output is:

6 0.000000

x 2

6 ' 'I <break> l'x'l'2'1 .36 I

Here, the integer is successfully matched with six.

The character is matched with a space but the float

character finds an 'x' in the way, so the first scanf

aborts, leaving the value of 'x' unchanged and the

rest of the characters still in the file. The second

scanf function then picks these up. It can be seen

that the first two characters are the 'x', which caused

the previous scanf to fail and the first two of the

intended floating point number .

15 - SfANDARD I/O

Listing 15.5

/**/

/* Example 3 */

/**/

#include <stdio.h>

main()

char chl,ch2,ch3;

scanf ("%c %c %c",&chl,&ch2,&ch3);

printf ("%c %c %c",chl,ch2,ch3);

Trials:
input: abc

output: ab c

input : a [return] b [return] c [return]

output: a b c

input: 2. 3

output: 2 . 3

Matching Without
Assigning
scanf allows input types to be matched but then

discarded without being assigned to any variable. It

also allows whole sequences of characters to be

matched and skipped. For example:

scanf ("%*c");

would skip a single character. The '*' character

means: do not make an assignment. Note that the

following is wrong:

scanf ("%*c", &ch);

C - A DABHAND GUIDE

Listing 15.6

A pointer should not be given for a dummy

conversion character. In this simple case above, it

probably does not matter but in a string with several

items to be matched, it would put the conversion

characters out of step with the variables, as scanf

does not return a value from a dummy conversion

character.

It might seem as though there would be no sense in

writing:

scanf ("%*s %f %c",&x,&ch);

because the whole input file is one Jong string after

all, but this is not true. As far as scanf() is concerned,

a string is terminated by any white space character,

so the float type 'x' and the character 'ch' would

receive values - provided there were a space or new

line character after any string.

If any non-conversion characters are typed into the

string, scanf will match and skip over them in the

input. For example:

scanf ("Number= %d",&i);

If the input were: 'Number = 256', scanf would

simply skip over the 'Number= ' . As usual, if the

string can't be matched, scanf will abort, leaving the

remaining characters in the input stream.

/**/
/* Example 4 */

/**/
#include <stdio . h>

main()

•
float x = 0;

int i 0;

char ch = '*';

scanf("Skipthis! %*f %d %*c",&i);

printf("%f %d %c",x,i,ch);

Input:Skipthis! 23

Output: 0. 000000 23 *

Input: 26

Output: 0. 000000 0 *

In this last case scanf aborted before matching

anything.

Formal Definition of scanf
The general form of the scanf function is as follows:

n = scanf ("string ... ", pointers);

The value 'n' returned, is the number of items

matched. It will be the end of file character EOF or

NULL if the first item did not match. This value is

often discarded.

The control string contains a number of conversion

specifiers with the following general form:

%[*][n]X

[*] The optional assignment suppression

character.

[n] This is a number giving the maximum field

width to be accepted by scanf for a particular

item. That is, the maximum number of

characters which are to be thought of as

being part of one the current variable value.

X Is one of the conversion characters listed

above.

15 - STANDARD 1/0

•

C - A DABHAND GUIDE

•

Any white space characters in the scanf string are

ignored . Any other characters are matched . The

pointers must be to correct variables and they must

match the conversion specifiers in the exact order in

which they are written .

There are two variations on the conversion specifiers

for strings, though it is unlikely many compilers will

support this. Both of the following imply strings:

%[set of characters] A string made up of the

given characters only.

%[11 set of characters] A string which is delimited

by the set of characters

given.

Points to Remember About
scanf
I) Scanf works across input lines as though it were

dealing with a file. Usually, the user types in a

line and hits the RETURN key. The whole line

is then thought of as being part of the input file,

std in.

2) If scanf finds the end of a line early, it will try to

read past it until all its needs are satisfied.

3) If scanf fails at any stage to match the correct

type of string at the correct time, it will quit

leaving the remaining input still in the file.

4) If an element is not matched, no value will be
assigned to the corresponding variable.

5) White space characters are ignored for all

conversion characters except %c. Only a %c type

can contain a white space character .

Questions:
I) What is a white space character?

2) Write a program which fetches two integers

from the user and multiplies them together.

Print out the answer. Try to make the input as

safe as possible.

3) Write a program which just echoes all the input

to the output.

4) Write a program which strips spaces out of the

input and replaces them with a single newline

character.

5) scanf always takes pointer arguments. True or

false?

Low Level Input/Output

getchar and putchar
scanf and printf are relatively high-level functions.

This means they are versatile and do a great deal of

hidden work for the user. C also provides some

'functions' for dealing with input and output at a

lower level, character by character. These 'functions'

are called getchar and putchar but, in fact, they

might not be functions: they could be macros

instead, as described in Chapter 13 - The Pre­

processor. Consult your compiler manual to find out

how they are implemented.
/\

high-level: print£\) scant\)

I '
low-level: putchar() getchar()

15 -STANDARD I/O

C - A DABHAND GUIDE

•

getchar gets a single character from the input file

stdio, and putchar writes a single character to the

output file, stdout. getchar returns a character type -

the next character on the input file. For example:

char ch;

ch= getchar();

This places the next character, whatever it might be,

into the variable 'ch'. Notice that no conversion to

different data types can be performed by getchar as

it deals with single characters only. It is a low-level

function and does not 'know' anything about data

types other than about characters.

getchar was used in the function skipgarb to tame

the scanf function . This function was written in a

very compact way.

Another way of writing it would be as follows:

skipgarb ()/*skip garbage corrupting scanf */

char ch;

ch = get char() ;

while (ch != '\n')

ch getchar();

The != symbol means 'is not equal to' and the while

statement is a loop. This function keeps on getchar­

ing until it finds the new line character and then it

quits . This function has many uses. One of these is

to copy immediate key press statements of languages

like BASIC, where a program responds to keys as

they are pressed without having to wait for the

RETURN key to be pressed. Without special library

functions to give this kind of input (which are not

universal), it is only possible to do this with the

RETURN key itself. For example:

printf("Press RETURN to continue\n");

skipgarb () ;

skipgarb does not receive any input until the user

presses Return, and then it simply skips over it in

one go! The effect is that it waits for RETURN to

be pressed.

putchar writes a character type and also returns a

character type.

For example:

char ch = '*';

putchar (ch) ;

ch= putchar (ch);

These two alternatives have the same effect. The

value returned by putchar is the character which was

written to the output. In other words, it just hands

the same value back again . This can simply be

discarded, as in the first line . putchar is not much

use without loops to repeat it over and over again.

An important point to remember is that putchar and

getchar could well be implemented as macros, rather

than functions . This means that it might not be

possible to use functions as parameters inside them:

putchar(function());

This depends entirely upon the compiler, but it is

something to watch out for.

gets and puts
Two 'functions' which are similar to putchar and

getchar are puts and gets which mean 'putstring'

and 'getstring', respectively. Their purpose is either

to read a whole string from the input file stdin, or

15 - SfANDARD 1/0

II

C - A DABHAND GUIDE

•

write a whole string to the output stdout. Strings are

groups or arrays of characters. For instance:

char *string[length];

string= gets(string);

puts(string);

More information about these is contained in

Chapter 20 - Strings.

Questions:
1) Is the following statement possible? (It could

depend upon your compiler: try it!)

putchar(getchar());

What might this do? (Hint: re-read the chapter

about the pre-processor.)

2) Re-write the statement in question one,

assuming that putchar and getchar are macros .

Assignments

Thinking in C

Working Things Out

Paving the Way ...
'Operator' is a word used a lot in connection with

C. Generally, an operator takes one or more values

and does something useful with those values. It

operates on them. The terminology which is found in

most books dealing with operators is as following :

Operator

Operand

Something which operates on some

'things'

Each thing which is operated upon by

the operator is called an operand

C - A DABHAND GmDE

II

Operation The action which was carried out

upon the operands by the operator!

There are lots of operators in C. Some of them may

already be familiar:

+ - * I = & ==

Most operators can be thought of as belonging to

one of three groups, divided up arbitrarily according

to what they do with their operands. These rough

groupings are thought of as follows:

1) Operators which produce new values from old

ones. They make a result from their operands .

For example: the addition operator (+) takes

two numbers, or two variables or a number and

a variable, and adds them together to give a new

number.

2) Operators which make comparisons . For

example, less than, equal to, greater than.

3) Operators which produce new variable types:

like the cast operator.

The majority of operators fall into the first group. C

has no less than 39 different operators. This is more

than, say, Pascal and BASIC put together! The

operators serve a variety of purposes and they can be

used very freely . The object of this chapter is to

explain the functions of operators in C. The more

intricate operators are looked at separately in

another chapter.

Expressions and Values
The most common operators in any language are

simple arithmetic operators. In C these are the

following:

+ plus (unary)

16 - ASSIGNMENfS, EXPRESSIONS & OPERATORS

minus (force value to be negative)

+ addition

•

I

I
%

subtraction

multiplication

floating point division

integer division 'div'

integer remainder 'mod'

These operators would not be useful without a

partner operator which could attach the values they

produce to variables. Perhaps the most important

operator then is the assignment operator:

= assignment operator

This has been used extensively up to now. For

example:

double x,y;

x = 2.356;

y x;

x = x + 2 + 3/5;

The assignment operator takes the value of whatever

is on the right-hand side of the '=' symbol and puts

it into the variable on the left-hand side . As usual

there is some standard jargon for this, which is

useful to know because compilers tend to use this

when handing out error messages. The assignment

operator can be summarised succinctly in the

following way:

lvalue = expression;

This statement says no more than what has been said

about assignments already: namely that it takes

something on the right-hand side and attaches it to

whatever is on the left-hand side of the'=' symbol.

•

C - A DABHAND GUIDE

1 + 2 + 3

An 'expression' is simply the name for any string of

operators, variables and numbers. All of the

following could be called expressions:

a + somefunction()

32 * x/3

i % 4

x

1

(22 + 4*(function() + 2))

function () /* provided it returns a sensible value */

On the other hand, '!values' are simply names for

memory locations: in other words variable names, or

identifiers . The name comes from 'left values'

meaning anything which can legally be written on

the left-hand side of an assignment. The definition is

circular!

Listing 16.1. Arithmetic and sign operators.

/***/

/*

/* Operators Demo # 1

/*

*/
*/

*/

/***/

#include <stdio.h>

/***/

main ()

int i;

printf ("Arithmetic Operators\n\n");

i = 6;

printf ("i = 6, -i is : %d\n", -i);

II

16 - ASSIGNMENTS, EXPRESSIONS & OPERATORS

printf ("int 1 + 2 %d\n", 1 + 2) ;

printf ("int 5 - 1 %d\n", 5 - 1) ;

printf ("int 5 * 2 %d\n", 5 * 2) ;

printf ("\n9 div 4 2 remainder 1: \n");

printf ("int 9 I 4 %d\n", 9 I 4) ;

printf ("int 9 % 4 %d\n", 9 % 4) ;

printf ("double 9 I 4 %f\n", 9.0

Output
Arithmetic operators :

i 6, -i is : -6

int 1 + 2 3

int 5 - 1 4

int 5 * 2 10

9 div 4 2 remainder 1:

int 9 I 4 2

int 9 4 1

double 9 I 4 = 2.250000

Brackets and Priority
Brackets are classed as operators by the compiler,

although their position is a bit unclear. They have a

value in the sense that they assume the value of

whatever is inside them . Brackets are used for

forcing a priority over operators. If an expression is

written out in an ambiguous way, such as:

a+b/4*2

It is not clear what is meant by this . It could be

interpreted in several different ways:

((a+b)/4)*2

or:

I 4 . 0) ;

•

C - A DABHAND GUIDE

•

(a + b)/ (4 * 2)

or:

a+ (b/4) * 2

By using brackets, any doubt about what the

expression means is removed . Brackets are said to

have a higher priority than +, * or / because they

are evaluated as 'sealed capsules' before other

operators can act on them. Putting brackets in may

remove the ambiguity of expressions, but it does not

alter the fact that:

a+b/4*2

is ambiguous. What will happen in this case? The

answer is that the C compiler has a convention

about the way in which expressions are evaluated: it

is called operator precedence. The convention is that

some operators are stronger than others and that the

stronger ones will always be evaluated first.

Otherwise, expressions like the one above, are

evaluated from left to right: so an expression will be
dealt with from left to right unless a strong operator

overrides this rule . Use brackets to be on the safe

side.

A table of all operators and their priorities is given in

the reference section.

Unary Operator Precedence
Unary operators are operators which have only a

single operand - that is, they operate on only one

object. For instance:

++

+

&

16 - ASSIGNMENTS, EXPRESSIONS & OPERATORS

The precedence of unary operators is from right to

left, so an expression something like:

*ptr++;

would do ++ before *.

Special Assignment
Operators, ++and - -
C has some special operators which cut down on the

amount of typing involved in a program. To get the

most out of these operators it is essential to think in

C. The simplest of these perhaps are the increment

and decrement operators:

++ increment: add one to

- - decrement: subtract one from

These attach to any variable, or integer, or floating

point type (character types too, with care). They are

used simply to add or subtract one from a variable.

Normally, in other languages, this is accomplished

by writing the following:

variable = variable + 1;

In C this would also be quite valid, but there is a

much better way of doing this:

variable++;

or alternatively:

++variable;

would do the same thing more neatly. Similarly:

variable = variable - 1;

is equivalent to:

variable- -;

or the following:

- -variable;

II

C - A DABHAND GUIDE

Notice particularly that these two operators can be

placed in front or after the name of the variable. In

some cases the two are identical, but in the more

advanced uses of C operators, which appear later in

this book, there is a subtle difference between the

two.

More Special Assignments
Here are some of the nicest operators in C. Like ++

and - - these are short ways of writing longer

expressions. Consider the statement:

variable = variable + 23;

In C this would be a long-winded way of adding 23

to 'variable'. It could be done more simply using the

general increment += operator.

For example:

variable += 23;

This performs exactly the same operation. Similarly

you could write:

variablel variablel + variable2;

as the following:

variablel += variable2;

and so on . There is a handful of these 'operation='

operators, one for each of the major operations

which can be performed. There is, naturally, one for

subtraction too:

variable = variable - 42;

which can be written :

variable -= 42;

More surprisingly, perhaps, the multiplicative
assignment:

variable = variable * 2;

may be written as:

16 -ASSIGNMENTS, EXPRESSIONS & OPERATORS

variable *= 2;

and so on. The main arithmetic operators all follow

this pattern:

+= Add assign

*

/=

Subtract assign

Multiply assign

Divide (double) and (int) types

Remainder (int) type only

There are more exotic kinds too which are used for

bit operations or machine-level operations, which

will be ignored at this stage:

>>=

<<=

/\

I=

&=

Listing 16.2. Operators demo #2.

/**************************************/
/*

/* Operators Demo # 2

/*

*/

*I
*I

/**************************************/
#include <stdio.h>

/**************************************/
main ()

int i;

printf ("Assignment Operators\n\n");

i = 10;

printf("i 10

/* Assignment */

%d\n", i);

C - A DABHAND GUIDE

i++; /* i i + 1 */

printf ("i++ %d\n", i);

i += 5; /* i = i + 5 */

printf ("i += 5 %d\n", i);

i- -; /* i i - 1 */

printf ("i- - %d\n", i);

i -= 2; /* i = i - 2 */

printf ("i 2 %d\n", i);

i *= 5; /* i i * 5 */

printf ("i *= 5 : %d\n", i);

i /= 2; I* i i I 2 */

printf ("i /= 2 %d\n", i);

i %= 3; /* i = i % 3 */

printf ("i %%= 3 %d\n", i);

Output
Assignment operators:

i = 10 : 10

i++ : 11

i += 5 16

i- - 15

i 2 : 13

i *= 5 :65

i /= 2 32

i %= 3 2

II

16 - ASSIGNMENTS, EXPRESSIONS & OPERATORS

The Cast Operator
The cast operator is an operator which forces a

particular type-mould or type-cast onto a value,

hence the name. For instance, a character type

variable could be forced to fit into an integer type

box by using the following statement:

char ch;

int i;

i = (int) ch;

This operator was introduced in Chapter 10 :

Variables, Types and Declarations. It will always

produce some value, whatever the conversion,

however improbable it might seem. For instance, it

is quite possible to convert a character into a floating

point number - the result will be a floating point

representation of its ASCII code!

Expressions and Types
There is a rule in C that all arithmetic and

mathematical operations must be carried out with

'long' variables. That is, the following types:

double

long float

int

long int

If the programmer tries to use other types, like short

or float, in a mathematical expression, they will be

cast into long types automatically by the compiler.

This can cause confusion because the compiler will

spot an error in the following statement:

short i, j = 2;

i = j * 2 + 1;

•

C - A DABHAND GUIDE

•

A compiler will claim that there is a type mismatch

between 'i' and the expression on the right-hand

side of the assignment. The compiler is perfectly

correct of course, even though it appears to be

wrong. The subtlety is that arithmetic cannot be

done in short type variables, so that the expression is

automatically converted into 'long' type or int type.

So the right-hand side is 'int' type and the left-hand

side is 'short' type : hence there is indeed a type

mismatch . The programmer can get around this by

using the cast operator to write:

short i, j = 2;

i = (short) j * 2 + 1;

A similar thing would happen with float :

float x, y = 2.3;

x = y * 2 .5 ;

It is incorrect for the reasons as just mentioned.

Comparisons and Logic
Six operators in C are for making logical

comparisons . The relevance of these operators will

quickly become clear in the next chapter, which is

about decisions and comparisons. The six operators

which compare values are:

Is equal to

!= Is not equal to

> Is greater than

< Is less than

>= Is greater than or equal to

<= Is less than or equal to

These operators belong to the second group

according to the scheme above, but they do actually

16 - ASSIGNMENTS, EXPRESSIONS & OPERATORS

result in values so that they could be thought of as

being a part of the first group of operators too. The

values which they produce are called true and false.

As words, 'true' and 'false' are not defined normally

in C, but it is easy to define them as macros and they

may well be defined in a library file. For example:

#define true 1

#define false 0

It is assumed 'false' as it has the value zero, and

'true' is assumed to be anything which is non-zero .

These comparison operators are used for making

decisions, but they are themselves operators and

thus expressions can be built up with them.

1 == 1 has the value 'true' (which could be anything

except zero)

The statement:

int i;

i = (1 == 2);

would be false, so i would be false. In other words, i

would be zero.

Comparisons are often made in pairs or even in

groups and linked together with words like OR and

AND. For instance, you might want to find out

whether:

(A is greater than B) AND (A is

greater than C)

C does not have words for these operations but

gives symbols instead . The 'logical operators', as

they are called, are as follows:

&& Logical AND

II Logical OR inclusive

Logical NOT

•

C - A DABHAND GUIDE

•

The statement which was written in words above

could be translated

as:

(A > B) && (A > C)

The statement:

(A is greater than B) AND (A is not

greater than C)

translates to:

(A > B) && ! (A > C)

Shakespeare might have been disappointed to learn

that, whatever the value of a variable 'tobe' the

result of:

thequestion = tobe I I !tobe

must always be true. The NOT operator always

creates the logical opposite: !true is false and !false is

true! One or the other of these must be true .

'thequestion' is therefore always true. Fortunately,

this is not a matter oflife or death!

Summary of Operators and
Precedence
The highest priority operators are listed first.

Operator Operation Evaluated

() parentheses left to right

[] square brackets left to right

++ increment right to left

decrement right to left

(type) cast operator right to left

* the contents of right to left

& the address of right to left

unary minus right to left

one's complement right to left

logical NOT right to left

16 - ASSIGNMENTS, EXPRESSIONS & OPERATORS

Operator Operation Evaluated

* multiply left to right

I divide left to right

% remainder (MOD) left to right

+ add left to right

subtract left to right

>> shift right left to right

<< shift left left to right

> is greater than left to right

>= greater or equal to left to right

<= less or equal to left to right

< less than left to right

is equal to left to right

!= is not equal to left to right

& bitwise AND left to right

" bitwise exclusive OR left to right

I bitwise inclusive OR left to right

&& logical AND left to right

II logical OR left to right

assign right to left

+= add assign right to left

subtract assign right to left

* multiply assign right to left

/= divide assign right to left

%= remainder assign right to left

>>= right shift assign right to left

<<= left shift assign right to left

&= AND assign right to left

" exclusive OR assign right to left

I= inclusive OR assign right to left

Questions
1) What is an operand?

2) Write a statement which prints out the

remainder of five divided by two.

II

C - A DABHAND GUIDE

•

3) Write a short statement which assigns the

remainder of five divided by two to a variable

called 'rem'.

4) Write a statement which subtracts -5 from 10.

5) Write in C: If one is not equal to 23, print out

'Thank goodness for mathematics!'

m Decisions

Testing and Branching

Making Conditions
In this chapter we consider decision making

constructions in C.

Suppose that a fictional traveller, some character in a

book like this one, came to the end of a straight,

unfinished road and waited there for his author to

decide where the road would lead . The author

might decide a number of things about this road

and its traveller:

I) The road will carry on in a straight line . If the

traveller is thirsty he will stop for a drink .

•

C - A DABHAND GUIDE

•

2) The road will fork and the traveller will have to

decide whether to take the left branch or the

right branch.

3) The road might have a crossroads or a meeting

point where many roads come together. Again

the traveller has to decide which way to go.

We are often faced with this dilemma: a situation in

which decisions have to be made. Up to now, the

simple example programs in this book have not had

any choice about the way in which they progressed.

They have all followed narrow paths without any

choice about which way they were going. This is a

very limited way of expressing ideas. The ability to

make decisions and to choose different options is

essential in programming. For instance, you might

want to implement t':e following ideas in different

programs:

1) If the user hits the jackpot, write some message

to say so: 'You've won the game!'

2) If a bank balance is positive then print C for

credit, otherwise print D for debit.

3) If the user has typed in one of five things, then

do something special for each special case,

otherwise do something else.

These choices are actually just the same choices that

the traveller had to make on his undecided road,

thinly disguised . In the first case there is a simple

choice: a do or don't choice. The second case gives

two choices: do thing one or thing two. The final

choice has several possibilities.

C offers four ways of making decisions like the ones

above. They are listed here. The method which is

numbered 2b was encountered in connection with

the C pre-processor; its purpose is very similar to 2a .

I)

if (something_is_true)

/* do something */

2a)

if (something_is_true)

/* do one thing */

else

/* do something else */

2b)

3)

? (something_is_true)

/* do one thing */

/* do something else */

switch (choice)

17 - DECISIONS

case first_possibility : /* do something */

case second_possibility : /* do something */

if
The first form of the 'ir statement is an all or

nothing choice. 'iP some condition is satisfied, do

what is in the braces, otherwise just skip what is in

the braces. Formally, this is written :

•

C - A DABHAND GUIDE

•

or:

if (condition) statement;

if (condition)

compound statement

if

if (?)
{

Figure 17. l. If some condition is s_,R-tisfied, do the contents of

this box then rejoin the mR-in pMh.

Notice that, as well as a single statement, a whole

statement block can be written under the 'if'

statement. In fact, there is an unwritten rule in C

that wherever a single statement will do, a

'compound statement' will do instead. A compound

statement is a block of single statements enclosed by

curly braces.

A condition is usually some kind of comparison, like

the ones discussed in the previous chapter. It must

have a value which is either true or false (one or

zero) and it must be enclosed by the brackets (and

). If the condition has the value 'true' then the

statement or compound statement following the

condition will be carried out, otherwise it will be

ignored. Some of the following examples help to

show this:

int i;

printf ("Type in an integer");

scanf ("%ld",&i);

if (i == 0)

printf ("The number was zero");

if (i > 0)

printf ("The number was positive");

if (i < 0)

printf ("The number was negative");

The same code could be written more briefly, but

perhaps less consistently in the following way:

int i;

printf ("Type in an integer");

scanf (" %ld", &i);

17 - DECISIONS

if (i == 0) printf ('The number was zero');

if (i > 0) printf ('The number was positive');

if (i < 0) printf ('The number was negative');

C - A DABHAND GUIDE

The preference in this book usually is to include the

block braces, even when they are not strictly

required. This does no harm. It is no more or less

efficient, but the programmer will often find that

some extra statements have to go into those braces,

so it is wise to include them from the start. It also

has the appeal that it makes 'if statements look the

same as all other block statements. It also makes

them clearly stand out in the program text. This rule

of thumb is only dropped in very simple examples

like:

if (i == 0) i++;

The 'if statement alone allows only a very limited

kind of decision: it makes do or don't decisions; it

could not decide whether our traveller should take

the left-hand fork or the right-hand fork of this

road, for instance - it could only tell the traveller

whether to get up and go at all . To do more it needs

to be extended. This is the purpose of the 'else'

statement, described after some example listings.

Example Listings
Listing 17.1. If demo #1.

/***/

/*

/* u ... n
/*

*/

*/

*/

/***/

#include <stdio.h>

#define true 1

#define false 0

/**/

•

17 - DECISIONS

main ()

int i;

if (true)

printf ("This is always printed");

if (false)

printf ("This is never printed");

Listing 17.2. If demo #2.

/***/

I*
/* If demo #2

/*

*/

*/

*/

/***/

/* On board car computer. Works out the */

/* number of kilometers to the litre */

I* that the car is doing at present */

#include <stdio.h>

/***/

/* Level 0 */

/***/

main ()

double fuel,distance;

FindValues (&fuel,&distance);

Report (fuel,distance);

•

C - A DABHAND GUIDE

/**/

/* Level 1 *I
/**/

FindValues (fuel,distance)/* from car*/

/* These values would be changing in */

/* a real car, independently of the */

/* program. */

double *fuel,*distance;

/* how much fuel used since last check on values */

printf ("Enter fuel used");

scanf (" %lf",fuel);

/* distance travelled since last check on values */

printf ("Enter distance travelled");

scanf (" %lf",distance);

/**/

Report (fuel,distance) /* on dashboard */

double fuel,distance;

double kpl;

kpl distance/fuel;

•

17 - DECISIONS

printf ("fuel consumption: %2.llf",kpl);

printf ("kilometers per litre\n");

if (kpl <= 1)

{

printf ("Predict fuel leak or car");

printf ("needs a service\n");

if (distance > 500)

printf ("Remember to check tyres\n");

if (fuel > 30) /* Tank holds 40 l */

printf ("Fuel getting low\n");

if ... else
The 'if .. ,else' statement has the following

form:

if (condition) statementl; else statement2;

This is most often written in the compound

statement form:

if (condition)

/* statements */

else

/* statements */

II

C - A DAB HAND GUIDE

•

The if ... else statement is a two-way branch, it means

do one thing or do the other. When it is executed,

the condition is evaluated and if it has the value

'true' (ie, not zero) then statement! is executed. If

the condition is 'false' (or zero) then statement2 is

executed.
lf ... else

tL -

NKmd W ... olM "ly ~
___J(~:, ... , <

? olseb? ~
else ? tt ? <

Pd each fork there is a docisM>n tt (?) else
Tho loft fork is tho iruth' branch
The right fork 1s the 'else' or 'otherwise' branch ·~C"

~
Figure 17.2. Which route - if. .. else selects.

The if ... else construction often saves an unnecessary

test from having to be made. For instance:

int i;

scanf ("%ld",i);

if (i > 0)

17 - DECISIONS

printf ("That number was positive!");

else

printf ("That number was negative or zero!");

It is not necessary to test whether i was negative in

the second block, because it was already implied by

the if.. .else structure. That is, the block would not

have been executed unless i were not greater than

zero . Our weary traveller might make a detision

such as:

if (rightleg > leftleg)

{

take left_branch();

else

take_right_branch();

}

Nested ifs and Logic
Consider the following statements which decide

upon the value of variable 'i' . Their purposes are

exactly the same.

if ((i > 2) && (i < 4))

printf ("i is three");

or alternatively:

if (i > 2)

if (i < 4)

•

C - A DABHAND GUIDE

•

printf ("i is three");

Both of these test i for the same information, but

they do it in different ways. The first method might

have been born out of the following sequence of

thought:

If i is greater than two and i is less than four,

both at the same time, then i has to be three.

The second method is more complicated. Think

carefully. It says:

If i is greater than two, do what is in the curly

braces . Inside these curly braces i is always

greater than two, because otherwise the program

would never have arrived inside them. Now, ifi is

also less than four, then do what is inside the

new curly braces . Inside these curly braces i is

always less than four . But also the whole of the

second test is held inside the 'i is greater than

two' braces, which is a sealed capsule: nothing

else can get in, so, if the program gets into the 'i

is less than four' braces as well, then both facts

must be true at the same time . There is only one

integer which is bigger than two and less than

four at the same time: it is three. So i is three.

The aim of this demonstration is to show that there

are two ways of making multiple decisions in C.

Using the logical comparison operators &&, II

(AND,OR) and so on, several multiple tests can be

made. In many cases though, it is too difficult to

think in terms of these operators and the sealed

capsule idea begins to look attractive . This is another

advantage of using the curly braces: it helps the

programmer to see that if statements and if.. .else

statements are made up of sealed capsule parts.

When inside a sealed capsule:

if (i > 2)

/* i is greater than 2 in here! */

else

/* i is not greater than 2 here! */

The programmer can rest assured that nothing

illegal can get in . The block braces are like regions

of grace, they can't be penetrated by anything which

does not satisfy the right conditions. This is an

enourmous weight off the mind! The programmer

can sit back and think: I have accepted that i is

greater than two inside these braces, so I can stop

worrying about that now. This is how programmers

learn to think in a structured way. They learn to be

satisfied that certain things have already been proven

and thus save themselves from the onset of madness

as the ideas become too complex to think of all in

one go.

Listing 17 .3. If demo #3.

17 - DECISIONS

/***/

/*

/* If demo #3

/*

*I
*/

*I
/***/

#include <stdio.h>

/***/

II

C - A DABHAND GUIDE

main ()

int persnum,usernum,balance;

persnum

balance

7462;

-12;

printf ("The Plastic Bank Corporation\n");

printf ("Please enter your personal number:");

usernum getnumber();

if (usernum 7462)

printf ("\nThe current state of your account\n");

printf ("is %d\n",balance);

if (balance < 0)

printf ("The account is overdrawn!\n");

else

printf ("This is not your account\n");

printf ("Have a splendid day! Thank you.\n");

/***/

getnumber () /* get a number from the user */

17 - DECISIONS

{ int num 0;

scanf ("%d",&num);

if ((num > 9999) I I (num <= 0))

printf ("That is not a valid number\n");

return (num);

Stringing Together
if ... else
What is the difference between the following

programs (listings 17.4 and 17.5)? They both

interpret some imaginary exam result in the

same way. They both look identical when

compiled and run. Why, then, are they

different?

Listing 17.4

/***/
/* Program 1 *I
/***/

#include <stdio.h>

main ()

int result;

printf("Type in exam result");

scanf ("%d",&result);

II

C - A DABHAND GUIDE

if (result < 10)

printf ("That is poor");

if (result > 20)

printf ("You have passed.");

if (result > 70)

printf ("You got an A!");

/* end */

Listing 17.5

/***/

/* Program 2 *I
/***/

#include <stdio.h>

main ()

int result;

printf("Type in exam result");

scanf (" %d",&result);

if (result < 10)

printf ("That is poor");

•

17 - DECISIONS

else

if (result > 20)

printf ("You have passed.");

else

if (result > 70)

printf ("You got an A!");

The answer is that the second of these programs can

be more efficient, insofar as the number of times it

has to work something out is concerned . This

because it uses the 'else' form of the 'if' statement.

Program one makes every_ single test, because the

program meets every if statement, one after the

other. The second program does not necessarily do

this however. The nested 'if' statements make sure

that the second two tests are only made if the first

one fails . Similarly, the third test is only performed if

the first two failed . So the second program could

end up doing a third of the work of the first

program, in the best possible case. Nesting decisions

like this can be an efficient way of controlling long

lists of decisions. Nested loops make a program

•

C - A DABHAND GUIDE

II

branch into lots of possible paths, but choosing one

path would preclude any others.

switch: Integers and
Characters
The 'switch' construction is another way of making

a program path branch into lots of different limbs. It

can be used as a different way of writing a string of

if ... else statements, but it is more versatile in that it

only works for integers and character type values. It

works like a multi-way switch (see figure 17.1). The

switch statement has the following form:

switch (int or char expression)

case constant : statement;

break; /* optional line*/

It has an expression which is evaluated and a

number of constant 'cases' which are to be chosen

from, each of which is followed by a statement or

compound statement. An extra statement called

'break' can also be incorporated into the block at

any point. Break is a reserved word in C.

1
®? - case2:

/
switch

switch(?)

(
case 1: I com mand3

break;

case 2:1 command$!

break;

• -cf. _____ :
• • ..

Figure 17.3. switch.

The switch statement can be written more

specifically for integers, as the follows shows:

switch (integer value)

17 - DECISIONS

case 1: statementl;

break; /* optional line */

case 2: statement2;

break; /* optional line */

default: default statement

•

C - A DABHAND GUIDE

break; /* optional line */

When a switch statement is encountered, the

expression in the brackets is evaluated. The program

then checks to see whether the result of that

expression matches any of the constants labelled

with 'case'. If a match is made (for instance, if the

expression is evaluated to 23 and there is a

statement beginning 'case 23 : ... '), execution will

start just after that case statement and will carry on

until either the closing brace is encountered or a

break statement is found . 'Break' is a handy way of

jumping straight out of the switch block. One of the

cases is called 'default'. Statements which follow the

'default' case are executed for all cases which are not

specifically listed .

Switch is a way of choosing some action from a

number of known instances. See listing 17.6 below.

Listing 17.6. switch example.

/**/

I*
/* switch .. case

/*

*/
*/

*/

/**/
/* Morse code program. Enter a number and */

/* find out what it is in Morse code */

#include <stdio.h>

#define code 0

/***/

main ()

•

17 - DECISIONS

{ short digit;

printf ("Enter any digit in the range 0 .. 9");

scanf ("%h",&digit);

if ((digit < 0) I I (digit > 9))

{

printf ("Number was not in range 0 .. 9");

return (code);

printf ("The Morse code of that digit is");

Morse (digit);

/**/

Morse (digit)

short digit;

/* print out Morse code */

switch (digit)

case 0 printf ("--");

break;

case 1 printf (".-");

break;

case 2 printf (" .. --");
break;

case 3 printf (" ... -");
break;

case 4 printf (" _,,) ;

break;

case 5 printf (" ") ;

•

C - A DABHAND GUIDE

case 6

case 7

case 8

case 9

•

break;

printf ("- ") ;

break;

printf ("- ... ") ;

break;

printf ("-- .. ") ;

break;

printf ("-.");

The program selects one of the printf statements

using a switch construction. At every 'case' in the

switch, a 'break' statement is used. This causes

control to jump straight out of the switch statement

to its closing brace. If break wasn't included, it

would go right on executing the statements to the

end, testing the cases in turn. Break gives a way of

jumping out of a switch quickly.

There might be cases where it is not necessary, or

not desirable, to jump out of the switch

immediately. Think of a function yes() which gets a

character from the user, and tests whether it was 'y'

or 'Y' .

yes () /* A sloppy but simple function */

switch (getchar())

case 'y'

case 'Y'

def a ult

return (true);

return (false);

If the character is either 'y' or 'Y', then the function

meets the statement 'return(true)'. If there had been

a break statement after case 'y', then control would

not have been able to reach case 'Y' as well.

However, the return statement does more than

break out of switch, it breaks out of the whole

function, so break was not required in this case. The

default option ensures that whatever else the

character is, the function returns false.

Things to try
1) Write a program to get a lot of numbers from

the user and print out the maximum and

minimum of those numbers.

2) Try to make a counter which is reset to zero

when it reaches the number 9999.

3) Write a program incorporating the statement if

(yes())(...).

17 - DECISIONS

II

C - A DABHAND GUIDE

•

Loops

Controlling Repetitive
Processes

Nesting Loops
Decisions can also be used to make up loops. Loops

free a program from the constriction of doing things

only once. They allow the programmer to build up a

sequence of instructions which can be executed

again and again, with some condition deciding when

they will stop.

There arc three kinds ofloop in C. They arc called:

while

do ... while

for

C - A DABHAND GUIDE

•

These three loops offer a great amount of flexibility

to programmers and can be used in some surprising

ways!

while
The simplest of the three loops is the 'while' loop.

In common language 'while' has a fairly obvious

meaning - the while loop has a condition:

while (condition)

statements;

and the statements in the curly braces are executed

while the condition has the value 'true' (1). There

are dialects in the English language, however, in

which 'while' does not have its commonplace

meaning, so it is worthwhile explaining the steps

which take place in a while loop.

while

{

IN
Figure 18.1. The structure of the while command .

The first important thing about this loop is that it

has a conditional expression (something like a > b

and so on) which is evaluated every time the loop is

executed by the computer. If the value of the

expression is true, then it will carry on with the

instructions in the curly braces. If the expression

evaluates to 'false' (or zero) then the instructions in

the braces are ignored and the entire 'while' loop

ends . The computer then moves on to the next

statement in the program.

The second thing to notice about this loop, is that

the conditional expression comes at the start of the

loop. This means that the condition is tested at the

start of every 'pass', not at the end. This is important

because if the condition has the value false before

the loop has been executed even once, the

statements inside the braces will not get executed at

all - not even once.

The best way to illustrate a loop is to give an

example of its use. One example was sneaked into

Chapter 15 before its time, in order to write the

'skipgarb' function which complemented scanf. That

was:

18 -LOOPS

skipgarb () /* skip garbage corrupting scanf */

while (getchar() != '\n')

This is a slightly odd use of the while loop which is

pure C. It is one instance in which you have to start

thinking specifically in C, and not any other

language.

C - A DABHAND GUIDE

skipgarb ()

Something which is immediately obvious from the

listing, is that the while loop in skipgarb is empty, it

contains no statements. This is quite valid - the loop

will merely do nothing a number of times. At least it

would do nothing if it were not for the assignment

in the conditional expression! It could also be

written:
/* skip garbage corrupting scanf */

while (getchar() != '\n');

•

The assignment inside the conditional expression

makes this loop special. When the loop is

encountered, the computer attempts to evaluate the

expression inside the brackets . There, inside the

brackets, it finds a function call to 'getchar()', so it

calls 'getchar()', which fetches the next character

from the input. Getchar() then takes on the value of

the character which it fetched from the input file .

Next, the computer finds the '!=' (is not equal to)

symbol and the new line character '\n'. This means

that there is a comparison to be made. The

computer compares the character fetched by getchar

with the new line character. If they are 'not equal',

the expression is true . If they are equal, the

expression is raise. Now, if the expression is true, the

while statement will loop and start again - and it will

evaluate the expression on every pass of the loop, to

check whether or not it is true. When the expression

eventually becomes raise, the loop will quit. The net

result of this is that skipgarb skips all the input

characters up to and including the next new line

('\n') character and that usually means the rest of the

input .

Another use of while is to write a better function

called yes. The idea of this function was introduced

in the previous section. It uses a while loop which is

always true to repeat the process of getting a

response from the user. When the response is either

'yes' or 'no', it quits using the return function to

jump right out of the loop.

Listing 18.1. Give me your answer.

18-LOOPS

/***/

/*

/* Give me your answer!

/*

*I
*/

*/

/***/

#include <stdio.h>

#define true 1

#define false 0

/***/

/* Level 0 */

/***/

main ()

printf ("Yes or no? (Y/N)\n");

if (yes())

{

printf ("YES!");

else

printf ("NO!");

•

C - A DABHAND GUIDE

/***/

/* Level 1 */

/***/

yes () /* get response Y/N query */

char getkey();

while (true)

switch (getkey())

case 'y'

case 'n'

case 'Y'

case 'N'

return (true);

return (false);

/***/

/* Toolkit */

/***/

char getkey();

char ch;

ch= getchar();

skipgarb();

I* get a character+RETURN */

/***/

skipgarb ()

while (getchar() != '\n');

I* end */

•

Listing 18.2. while loop.

This example listing prompts the user to type in a

line of text and it counts all the spaces in that line. It

quits when there is no more input left and prints out

the number of spaces.

18-LOOPS

/***/
/* while loop */

/***/
/* count all the spaces in an line of input */

#include <stdio.h>

main ()

char ch;

short count = 0;

printf ("Type in a line of text\n");

while ((ch

{

getchar()) != '\n')

if (ch == ' ')

count++;

printf ("Number of space %d\n",count);

do ... while
The do ... while loop resembles most closely the

repeat ... until loops of Pascal and BBC BASIC, except

that it is the 'logical opposite' . The do loop has the

form:

II

C - A DABHAND GUIDE

OUT

do while

IN

•

do
{
}

while(?)

Figure 18.2. The do ... while commtJnd structure.

do

statements;

while (condition)

Notice that the condition is at the end of this loop .

This means that a do ... while loop will always be

executed at least once, before the test is made to

determine whether it should continue. This is the

only difference between while and do ... while.

A do ... while loop is like the, 'repeat ... until', of other

languages in the following sense - if the condition is

NOTed using the (!) operator, then the two are

identical.

repeat do

until(condition) while (!condition)

18 -LOOPS

This fact might be useful for programmers who have

still not learnt to think in C!

Here is an example of the use of a do ... while loop.

This program gets a line of input from the user and

checks whether it contains a string marked out with

quote marks (" ") . If a string is found, the program

prints out the contents of the string only. A typical

input line might be:

Once upon a time "Here we qo round

the ... "what a terrible . .

The output would then be:

Here we go round the ...

If the string has only one quote mark then the error

message 'string was not closed before end of line'

will be printed.

Listing 18.3. do ... while demo.

/**/

/*

/* do ... while demo

/*

*I
*/

*/

/**/

/* print a string enclosed by quotes " " */

/* gets input from stdin i.e. keyboard */

/* skips anything outside the quotes */

#include <stdio.h>

/***/

/* Level 0 */

/***/

main ()

char ch,skipstring();

•

C - A DABHAND GUIDE

do

if ((ch

{

getchar ()) '\\ ')

printf ("The string was:\n");

ch= skipstring();

while(ch != '\n');

/***/

/* Level 1 */

/***/

•

char skipstring () /* skip a string " " */

do

char ch;

ch= getchar();

putchar(ch);

if (ch == '\n')

(

printf ("\nString was not closed");

printf ("before end of line\n");

break;

while (ch != '"');

return (ch);

for
The most interesting and also the most complex of

all the loops, is the 'for' loop. The name 'for' is a

hangover from earlier days and other languages. It is

not altogether appropriate for C's version of 'for'.

The name comes from the typical description of a

classic 'for' loop:

'for all values of <variable> from <some value>

to <some value> in Steps of <some value>,

repeat the following sequence of

commands '

In BASIC this looks like :

18 - LOOPS

FOR <variable> = <value> TO <value> STEP <value>

NEXT <variable>

The C 'for' loop is much more versatile than its

BASIC counterpart. It is actually based on the

'while' construction. A 'for' loop normally has the

characteristic feature of controlling one particular

variable, called the control variable. That variable is

somehow associated with the loop. For example it

might be a variable which is used to count 'for values

from zero to 10' or whatever.

The form of the for loop is as follows:

for (statementl; condition; statement2)

For normal usage, these expressions have the

following significance.

statement! This is some kind of expression which

initialises the control variable . This

statement is only carried out once

II

C - A DAB HAND Gill DE

•

before the start of the loop. For

example: i = O;

condition This is a condition which behaves like

the while loop. The condition is

evaluated at the beginning of every

loop and the loop is only carried out

while this expression is true. For

example: i < 20;

statement2 This is some kind of expression for

altering the value of the control

variable. In languages such as Pascal

this always means adding or

subtracting one from the variable. In C

it can be absolutely anything. Eg: i++

or i * = 20 or i / = 2 .3 ...

IN
for (statement 1 ; ? ; statement 2)

f
Figure 18.3. The structure of ti for loop.

Compare a C 'for' loop to the BASIC 'for' loop.

Here is an example in which the loop counts from

zero to 10 in steps of0.5:

FOR X = 0 TO 10 STEP 0.5

NEXT X

for (x O; x <= 10; x += 0.5)

The C translation looks peculiar in comparison,

because it works on a different principle . It does not

contain information about when it will stop, as the

BASIC version does, instead it contains information

about when it should be looping. The result is that a

C 'for' loop often has the '<=' symbol in it.

The 'for' loop has plenty of uses. It could be used to

find the sum of the first n natural numbers very

simply:

sum 0;

for (i 0; i <= n; i++)

sum += i;

It generally finds itself useful in applications where a

single variable has to be controlled in a well­

determined way.

Listing 18.4. Prime number generator #1.

This example program prints out all the prime

numbers between one and the macro value 'maxim'.

Prime numbers are numbers which can't be divided

by any number except one without leaving a

remainder.

18 - LOOPS

/**/

/*

/* Prime Number Generator #1

/*

*I
*/

*/

/ **/

•

C - A DABHAND GUIDE

/* Check for prime number by raw number */

/* crunching. Try dividing all numbers */

/* up to half the size of a given i, if */

/* remainder == 0 then not prime! */

#include <stdio.h>

#define maxint 500

#define true 1

#define false 0

/***/

/* Level 0 */

/***/

main ()

{ int i;

for (i = 2; i <= maxint; i++)

if (prime (i))

printf ("%5d",i);

/***/

/* Level 1 *I
/***/

II

prime (i)

int i;

{ int j;

/* check for a prime number */

for (j = 2; j <= i/2; j++)

{

if (i % j 0)

return (false);

return (true);

The Flexible 'for' Loop
The word 'statement' was chosen carefully to

describe what goes into a 'for' loop . Look at the

loop again:

for (statementl; condition; statement2)

Statement really means what it says. C will accept

any statement in the place of those above, including

the empty statement. The while loop could be

written as a 'for' loop!

for (; condition; /* while ?? */

Here there are two empty statements, which are just

wasted. This flexibility can be put to better uses

though . Consider the following loop:

for (x = 2; x <= 1000; x x * x)

18 -LOOPS

•

C - A DABHAND GUIDE

•

This loop begins at two and each time the

statements in the braces are executed, x squares

itself1 Another 'odd' looking loop is the following

one below:

for (ch

getchar ())

'*'; ch != '\n'; ch

This could be used to make yet another different

kind of skipgarb function. The loop starts off by

initialising ch with a star character. It checks that ch

!= ' \n' (which it isn't, first time around) and

proceeds with the loop. On each new pass, ch is

reassigned by calling the function getchar.

Statement2 can be any statement at all which you

would like to be executed on every pass of the loop.

You might ask: 'Why not put that statement in the

curly braces?' In most cases that would be the best

thing to do, but in special instances it might keep a

program tidier or more readable to put it in a 'for'

loop instead. There is no hard and fast rule for when

to do this, you will be able to decide which is best

when you become more aquainted with C.

In some compilers (including UNIX) you may have

two statements where statement2 is written . For

instance:

f o r (i=O; ;<number; i++, j++)

It is not only the statements which are flexible. An

unnerving feature of the 'for' construction

(according to some programmers!) is that even the

conditional expression in the 'for' loop can be

altered by the program from within the loop itself if

it is written as a variable .

int i, number 20;

for (i 0; i <= number; i++)

if (i 9)

number 30;

This is so nerve-shattering that many languages

totally forbid it! It is not often a very good idea to

use this facility, but in the right hands, it is a

powerful one to have around.

Quitting Loops and Hurrying

Them Up!
It is an infuriating waste of time to find, during the

course of a loop, that a program has to wait for the

rest of a loop to finish when it does not really need

to. C provides a simple way of jumping out of any of

the three loops above whether it has finished or not.

The statement which performs this action is the

same statement which was used to jump out of

'switch' statements in last section.

break;

If this statement is encountered, a loop will quit

where: it stands. For instance, an expensive way of

assigning i to be 12 would be:

for (i = 1; i <= 20; i++)

if (i 12)

break;

18 - LOOPS

•

C - A DABHAND GIBDE

•

Still another way of making skipgarb, would be to

perform the following loop:

while (true)

ch= getchar();

if (ch== '\n')

break;

Of course, another way to do this would be to use

the return function, which jumps right out of a

whole function . 'Break' only jumps out of the loop,

so it is less drastic.

As well as wanting to quit a loop, a programmer

might want to hurry a loop on to the next pass -

perhaps to avoid executing a lot of irrelevant

statements. C gives a statement for this too, called:

continue;

When a continue statement is encountered, a loop

will stop whatever it is doing and will go straight to

the start of the next loop pass. This might be useful

to avoid dividing by zero in a program:

for (i = -10; i <= 10; i++)

if (i == 0)

continue;

printf ("%d", 20/i);

Nested Loops
Like decisions, loops will also nest - that is, loops

can be placed inside other loops. Although this

feature will work with any loop at all, it is most

commonly used with the 'for' loop, because this is

easiest to control. The idea of nested loops is

important for multi-dimensional arrays which will

be examined in the next chapter. A 'for' loop

controls the number of times that a particular set of

statements will be carried out. Another 'greater'

loop could be used to control the number of times

that a whole loop is carried out. To see the benefit

of nesting loops, the following example shows how a

square could be printed out using two printf

statements and two loops.

OUT

18 -LOOPS

IN
When loops are nested, a whole loop gets hidden
away inside a 'sealed capsule' block.

Figure 18.4. Nested loops.

•

C ~A DABHAND GUIDE

Listing 18.5. The square.

/***/

I*
/* A "Square"

/*

*/

*/

*/

/***/
#include <stdio.h>

#define size 10

/***/
main {)

II

{ int i,j;

for {i = 1; i <= size; i++)

for {j = 1; j <= size; j++)

{

printf {"*");

printf {"\n");

The output of this program is a 'kind of' square:

Questions:
1) How many kinds of loop does Coffer, and what

are they?

2) When is the condition tested in each of the

loops?

3) Which of the loops is always executed once?

4) Write a program which copies all input to

output line by line.

5) Write a program to get 10 numbers from the

user and add them together.

18-LOOPS

•

C - A DABHAND GUIDE

•

II

Arrays

Rows and Grids of Storage

Initialisation
Arrays are a convenient way of grouping a lot of

variables under a nngle Pariable name. Arrays are like

pigeon -holes or chessboards, with each

compartment or square acting as a storage place -

they can be one-dimensional, two-dimensional or

more-dimensional!

An array is defined using square brackets [] . For

example: an array of three integers called 'triplet'

would be declared like this:

int triplet[3];

Notice that there is no space between the square

bracket [and the name of the array. This statement

•

C - A DABHAND GUIDE

•

would cause space for three integers type variables to

be created in memory next to each other as in the

diagram below.

int triplet:

The number in the square brackets of the

declaration is referred to as the 'index' (plural:

indices) or 'subscript' of the array and it must be an

integer number between zero and (in this case) two.

The three integers are called elements of the array

and they are referred to in a program by writing the

following:

triplet[O]

triplet [l]

triplet[2]

Note that the indices start at zero and run up to one

less than the number which is placed in the

declaration (which is called the dimension of the

array.) The reason for this will become clear later.

Also notice that every element in an array is of the

same type as every other. It is not possible (at this

stage) to have arrays which contain many different

data-types. When arrays are declared inside a

function, storage is allocated for them, but that

storage space is not initialised - that is, the memory

space contains garbage (random values). It is usually

necessary, therefore, to initialise the array before the

program truly begins, to prepare it for use . This

normally means that all the elements in the array

should be set to zero.

Why Use Arrays?
Arrays are most useful when they have a large

number of elements - that is, in cases where it

would be completely impractical to have a different

name for every storage space in the memory. It is

then highly beneficial to move over to arrays for

storing information for two particular reasons:

I) The storage spaces in arrays have indices. These

numbers can often be related to variables in a

problem and so there is a logical connection to

be made between an array an a program.

2) In C, arrays can be initialised very easily indeed.

It is far easier to initialise an array than it is to

initialise 20 or so variables.

The first reason is probably the most important as

far as C is concerned, since information can be

stored in other ways with equally simple initialisation

facilities in C.

One example of the use of an array might be in

taking a census of the types of car passing on a road.

By defining macros for the names of the different

cars, they could easily be linked to the clements in

an array.

Type

car

auto

bi)

Array Element

0

1

2

The array could then be used to store the number of

cars of a given type which had driven past. For

example, look at listing 19 .1.

19-ARRAYS

•

C - A DABHAND GUIDE

Listing 19.1. Car census.

/***/
/*

/* Census

/*

*/

*/

*/

/***/
#include "stdio.h"

#define notfinished 1

#define car 0

#define auto 1

#define bil 2

/**/

*/

•

main ()

int type[3];

int index;

for (index O; index < 3; index++)

type [index] 0;

while (notfinished)

printf ("Enter type number 0,1, or 2");

scanf (" %d", &index);

skipgarb();

type[index] += l; /* See text below

This program, first of all, initialises the elements of

the array to be zero. It then enters a loop which

repeatedly fetches a number from the user and

increases the value stored in the array element,

labelled by that number, by one. The effect is to

count the cars as they go past . This example

program is actually not a very good one for two

reasons in particular:

1) First, it does not check that the number which

the user typed is actually one of the elements of

the array. See the section below about this.

2) The loop goes on for ever and the program

never gives up the information which is stores.

In short: it is not very useful!

Another example, which comes readily to mind,

would be the use of a two-dimensional array for

storing the positions of chess pieces in a chess game.

Two-dimensional arrays have a chessboard-like

structure already and they require two numbers (two

indicies) to pinpoint a particular storage 'cell'. This

is just like the numbers on a chess board, so there is

an immediate and logical connection between an

array and the problem of keeping track of the pieces

on a chess board.

Arrays play an important role in the handling of

string variables. Strings are important enough to

have a section of their own. See Chapter 20 -

Strings, for more information.

Limits and the Dimension

of an Array
C does not do much hand holding for programmers.

It is invariably up to the programmer to make sure

that programs are free from errors. This is true with

19-ARRAYS

•

C - A DABHAND GUIDE

•

arrays too. C does not complain if a program tries to

write to elements of an array which do not exist! For

example:

char array[S];

is an array with five elements. If the user then writes:

array[?] = '*';

C would happily try to write the character * at the

location which would have corresponded to the

seventh element, had it been declared that way.

Unfortunately, this would probably be memory

taken up by some other variable, or perhaps even by

the operating system. The result would be either:

or:

The value in the incorrect memory location

would be corrupted and no harm would be

done.

The value would totally corrupt the memory and

crash the system completely!

This is a common source of error. Remember that

array limits run from zero to the size of the array

minus one.

Arrays and 'for' Loops
Arrays have a natural partner in programs - the 'for'

loop . The 'for' loop provides a simple way of

counting through the numbers of an index in a

controlled way.

Consider a one-dimensional array called 'array' . A

'for' loop can be used to initialise the array, so that

all its elements contain zero:

#define size 10;

main ()

inti, array[size];

for (i = 0; i < size; i++)

array[i] 0;

It could equally well be used to fill the array with

different values. Consider the following:

#define size 10;

main ()

inti, array[size];

for (i = 0; i < size; i++)

array[i] i;

This fills each successive space with the number of

its index:

index 0 1 2 3 4 5

19-ARRAYS

6 7 8 9

element I 0 I 1
contents~~~~~~~~~~~~~~~~~~~~~~

2 I 3 I 4 5 6 I 7 8 I 9 I

The 'for' loop can be used to work on an array

sequentially at any time during a program, not only

when it is being initialised . The example listing,

19.2, shows an example of how this might work for

a one-dimensional array, called an Eratosthenes

sieve. This sieve is an array which is used for

weeding out prime numbers - that is : numbers

which cannot be divided by any number except one

without leaving a remainder or a fraction . It works

by filling an array with numbers from zero to some

II

C - A DABHAND GUIDE

maximum value in the same way that was shown

previously and then by going through the numbers

in turn and deleting (setting equal to zero) every

multiple of every number from the array. This

eliminates all the numbers which could be divided

by something exactly and leaves only the prime

numbers at the end. Try to follow through the

listing below.

Listing 19.2. Eratosthenes sieve.

/***/

/*
/* Prime Number sieve

/*

*/

*/

*/

/***/

#include <stdio.h>

#define size 5000

#define deleted 0

/***/

/* Level 0 */

/***/

main ()

short sieve[size];

printf ("Eratosthenes sieve \n\n");

FillSieve(sieve);

SortPrimes(sieve);

PrintPrimes(sieve);

/***/

/* Level 1 */

/***/

•

19-ARRAYS

FillSieve (sieve) /* Fill with integers */

short sieve[size];

short i;

for (i = 2; i < size; i++)

sieve[i] i;

/***/

SortPrimes (sieve) /* Delete non primes */

short sieve[size];

short i;

for (i = 2; i < size; i++)

if (sieve[i] deleted)

continue;

DeleteMultiplesOf(i,sieve);

/***/

PrintPrimes (sieve) /* Print out array */

short sieve[size];

•

C - A DABHAND GIBDE

short i;

for (i = 2; i < size; i++)

if (sieve[i] deleted)

continue;

else

printf (" %5d",sieve[i]);

/***/

/* Level 2 */

/***/

DeleteMultiplesOf (i,sieve) /*Delete .. of an integer*/

short i,sieve[size];

short j, mult = 2;

for (j = i*2; j < size; j

sieve [j] deleted;

•

i * (mult++))

Arrays of More than One

Dimension
There is no limit, in principle, to the number of

indicies which an array can have. (Though there is a

limit to the amount of memory available for their

storage.) A two-dimensional array could be declared

in the following way:

float numbers [size] [size];

Size is some macro constant. The sizes of the two

'dimensions' do not have to be the same . This is

called a two-dimensional array because it has two

indicies, or two labels in square brackets. It has (size

* size) or size-squared elements in it, which form an

imaginary grid, like a chess board, in which every

square is a variable or storage area as follows:

19-ARRAYS

0 1 2 3 4 5 6 7 8 . . . (up to size)

1

2

3

4

5

6

7

(up to size)

Every element in this grid needs two indices to pin­

point it. The elements are accessed by giving the co­

ordinates of the element in the grid. For instance to

set the element two - three to the value 12, you

would write:

array[2] [3] = 12;

The usual terminology for the two indices is that the

first gives the row number in the grid and that the

•

C - A DABHAND GUIDE

•

second gives the column number in the grid. Rows

go along, columns hold up the ceiling.

An array can't be stored in the memory as a grid, as

computer memory is a one-dimensional thing.

Arrays are therefore stored in rows. The following

array:

1 2 3

4 5 6

7 8 9

would be stored as:

1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

* ROW # 1 * ROW # 2 * ROW #3 *

Another way of saying that arrays are stored row­

wise, is to say that the second index varies fastest

because a two-dimensional array is always thought of

as:

array[row] [column]

So for every row stored, there will be lots of

columns inside that row. That means the column

index goes from zero to size inside every row, so it is

changing faster as the line of storage is followed .

A three-dimensional array, like a cube or a cuboid,

could also be defined in the same kind of way:

double cube [size] [size] [size];

or with different limits on each dimension:

short notcubic [2] [6] [8];

Three-dimensional arrays are stored according to the

same pattern as two-dimensional arrays. They are

kept in computer memory as a linear sequence of

variable stores and the last index is always the one

which varies fastest .

Arrays and Nested Loops
Arrays of more than one dimension are usually

handled by nested for loops. A two-dimensional

array might be initialised in the manner shown

below:

main ()

int i,j;
float array [sizel] [size2];

for (i = O; i < sizel; i++)

for (j = 0; j < size2; j++)
{

array[i] [j] = O;
)

In three dimensions, three nested loops would be

needed:

main ()

int i,j,k;
float array[sizel] [size2] [size3];

for (i = O; i < sizel; i++)
{

for (j = O; j < size2; j++)
{

for (k = O; k < size3; k++)
{

array[i] [j] [k] = 0;
)

19-ARRAYS

II

C - A DABHAND GUIDE

An example program helps to show how this

happens in practice. The aim is to mimic something

like cell reproduction by applying some rigid rules to

a pattern of dots (.) and stars (*). A dot is a place

where there is no life (as we know it!) and a star is a

place in which there is a living thing. The rules will

be clear from the listing. Things to notice are the

way the program traverses the arrays and the way in

which it checks that it is not over-stepping the

boundaries of the arrays.

Usting 19.3. The Game of Life.

/***/

/*

/* Game of Life

/*

*/

*/

*/

/***/

/*Based upon an article from Scientific American */

/* in 1970. Simulates the reproduction of cells*/

/* which depend on one another. The rules are */

I* that cells will only survive if they have a *I
I* certain number of neighbours to support them*/

/* but not too many, or there won't be enough */

/* food! */

#include <stdio.h>

#define size 20

#define maxnum 15

#define inbounds (a>=-0) && (a<size) && (b>=O) && (b<sire)

#define noresponse 1

/***/

/* Level 0 */

/***/

•

19-ARRAYS

main ()

int count [size] [size];

char array [size] [size];

int generation = O;

printf ("Game of Life\n\n\n");

InitializeArray(array);

while (noresponse)

CountNeighbours(array,count);

BuildNextGeneration(array,count);

UpdateDisplay(array,++generation);

printf ("\n\nQ for quit. RETURN to continue. \n");

if(quit()) break;

}

/***/
/* Level 1 */

/***/

InitializeArray (array) /* Get starting conditions */

char array[size] [size];

int i,j;

char ch;

printf ("\nEnter starting setup. Type '.' for empty");

printf ("\nand any other character for occupied.\n");

printf ("RETURN after each line.\n\n");

printf ("Array size guide:\n\n");

for (i=O; i++ <size; printf("%c",'A'));

•

C - A DABHAND GUIDE

printf ("\n\n");

for (i 0; i < size; i++)

for (j = 0; j < size; j++)

{

scanf ("%c",&ch);

if (ch=='.')

else

skipgarb();

array[i] [j]

array[i] [j]

}

\ I • . ,

'*, . ,

printf ("\n\ninput is complete. Press RETURN.");

skipgarb();

/***/

CountNeighbours (array,count) /* count all neighbours */

char array[size] [size];

int count [size] [size];

int i,j;

for (i = O; i < size; i++)

II
for (j = O; j < size; j++)

{

19-ARRAYS

count [i] [j]

}

numalive(array,i,j);

/***/

BuildNextGeneration (array,count)

/* A cell will survive if it has two or three */

/* neighbours. New life will be born to a dead */

/* cell if there are exactly three neighbours */

char array[size] [size];

int count [size] [size];

int i,j;

for (i 0; i < size; i++)

for (j = 0; j < size; j++)

{

if (array[i] [j] '*')

else

switch (count[i] [j])

{

case 2

case 3 continue;

default: array [i] [j]

break;

switch (count[iJ[jJ)

' , . . ,

•

C - A DABHAND GUIDE

case 3 :array[i] [j]

break;

default: continue;

'*' . ,

/***/

UpdateDisplay (array,g) /* print out life array */

char array [size] [size];

int g;

int i,j;

printf ("\n\nGeneration %d\n\n",g);

for (i O; i < size; i++)

for (j = 0; j < size; j++)

{

printf("%c",array[i] [j]);

printf ("\n");

/***/

/* Level 2 */

/***/

•

19-ARRAYS

numalive (array,i,j)

/*Don't count array[i,j] : only its neighbours*/

/* Also check that haven't reached the boundary */

/* of the array */

char array [size] [size];

int i,j;

int a,b,census;

census = O;

for (a (i-1); (a <= (i+l)) ; a++)

for (b = (j-1); (b <= (j+l)); b++)

{

if (inbounds && (array[a] [b]

census++;

if (array[i][j] =='*')census-;

return (census);

'*,))

/***/

/* Toolkit input */

/***/

quit()

char ch;

while (noresponse)

•

C - A DABHAND GUIDE

scanf ("%c",&ch);

if (ch != '\n') skipgarb();

switch (ch)

{

case 'q'

default

case 'Q': return (l);

return (0);

/***/

skipgarb ()

while (getchar() != '\n');

Example run of the Game of Life

Game of Life

Enter starting setup. Type ' '
other character for occupied.
line.

Array size guide:
AAAAAAAAAAAAAAAAAAAA

(user types in:

*

•

for empty and any
RETURN after each

19-ARRAYS

It doesn't matter if the input spills over the size guide, because

'skipgarb()' discards it.

Input is complete. Press RETURN.

Generation 1

* ***

Q for quit. RETURN to continue.

Generation 2

.......... *. *
*

* *

* *
* *

•

C - A DABHAND GlTIDE

•

Q for quit. RETURN to continue.

Generation 3

*
* *. *
*
*

******* ****

** **

Q for quit. RETURN to continue.

Generation 4

.......... *. *

*****.*.*.**

* *
*

*
*
* * *

* *
* *
* *

Q for quit. RETURN to continue.

Try experimenting with different starting patterns .

Initialising Arrays
Arrays can be initialised in two ways. The first way is

by assigning every

element to some value with a statement as follows:

array[2] 42;

array[3] 12;

or perhaps with the aid of one or more for loops.

Because it is tedious and uneconomical to initialise

the values of each element as different values, C

provides another method, which employs a single

assignment operator('=') and curly braces, {). This

method only works for static variables and external

variables.

Recall that arrays are stored 'row-wise' or with the

last index varying fastest. A three by three array

could be initialised in the following way:

static int array[3] [3] =

{10,23,42},

{1,654,0},

{40652,22,0}

} ;

The internal braces are unnecessary, but help to

distinguish the rows from the columns. The same

thing could be written as follows:

int array [3] [3]

10,23,42,

1,654,0

40652,22,0

} ;

19-ARRAYS

•

C - A DABHAND GUIDE

•

Take care to include the semicolon at the end of the

curly brace which closes the assignment.

Note that, if there are not enough elements in the

curly braces to account for every single element in

an array, the remaining elements will be filled out

with zeros. Static variables are always guaranteed to

be initialised to zero anyway, whereas auto or local

variables are guaranteed to be garbage. This is

because static storage is created by the compiler in

the body of a program, whereas auto or local storage

is created at run-time.

Arrays and Pointers
The information about how arrays are stored was

not included just for interest. There is another way

of looking at arrays which follows the BCPL idea of

an array as simply a block of memory. An array can

be accessed with pointers as well as with square

brackets([]):

The name of an array variable, standing alone, is

actually a pointer to the first element in the

array.

For example, if an array is declared:

float nurnbers[34];

then 'numbers' is a pointer to the first floating point

number in the array - 'numbers' is a pointer in its

own right. In this case it is type 'pointer to float'. So

the first element of the array could be accessed by

writing:

nurnbers[O]

or by writing:

*numbers

22.3;

22.3;

For character arrays, which are dealt with in some

depth in Chapter 20, this gives an alternative way of

getting at the elements in the array.

char arrayname[S);

char *ptr;

for (ptr arrayname; ptr <=
arrayname+4; ptr++)

*ptr = 0;

The code above sets the array ('arrayname') to zero .

I do not recommend this method of getting at array

data, except in very simple computer environments.

If a program is running on a normal micro, then

there should be few problems with this alternative

method of handling arrays. On the other hand, if

the micro is multi-tasking, or the program is

running on a larger system which has a limited

manager, then memory ceases to be something

19-ARRAYS

which can be thought of as a sequence of boxes standing next to one

another. A multi-tasking system shares memory with other programs and

it takes what it can find, where it can find it. It is therefore not possible

to guarantee that arrays will be stored in one simple string of memory

locations, it might be scattered around in different

places. So:

ptr = arrayname + 5;

might not be a pointer to the fifth character in a

character array. This could be found instead using

the & operator. A pointer to the fifth element can

be reliably found with :

ptr = &(arrayname[S]);

Be warned!

II

C - A DABHAND GUIDE

Arrays as Parameters
What happens if you want to pass an array as a

parameter? Does the program copy the entire array

into local storage? The answer is 'no', because it

would be an enormous waste of time and memory.

Arrays can be passed as parameters, but only as

variable ones. This is a simple matter, because the

name of the array is a pointer to the array. The

Game of Life program does this. Notice from that

program how the declarations for the parameters are

made.

main ()

{char array[23];

function (array);

function (arrayformal)
char arrayformal[23];

Any function which writes to the array, passed as a

parameter, will affect the original copy . Array

parameters are always variable parameters.

Questions:
1) Given any array, how would you find a pointer to

the start of it?

2) How do you pass an array as a parameter? When

the parameter is received by a function does C

allocate space for a local variable and copy the

whole array to the new location?

3) Write a statement which declares an array of type

double which measures four by five. What

numbers can be written in the indicies of the

array?

19-ARRAYS

•

C - A DABHAND GUIDE

•

Strings

Communication with
Strings and Arrays
Strings are pieces of text which can be treated as

'values' for variables. In C a string is represented as

some characters enclosed by double quotes as

follows.

"This is a string"

A string may contain any character, including special

control characters, such as '\n', '\r', '\7' and so on:

"Beep! \7 Newline \n ... "

C - A DABHAND GUIDE

Conventions and
Declarations
There is an important distinction between a string

and a single character in C. The convention is that

single characters are enclosed by single quotes, eg:

'*' and have the type char. Strings, on the hand, are

enclosed by double quotes eg: "string ... " and have

the type "pointer to char" (char*) or array of char.

Here are some declarations for strings which are

given without immediate explanations.

Listing 20.1. String declaration.

/***/

/*

/* String Declaration

I*

*/

*I
*/

/***/

•

#define size 10

char *global_stringl;

char global_string2[size];

main ()

char *auto_string;

char arraystr[size];

static char *stat_strng;

static char statarraystr[size];

Strings, Arrays and
Pointers
A string is really an array of characters. It is stored in

memory and is given an end marker which standard

library functions can recognize as being the end of

the string. The end marker is called the zero (or

null) byte because it is just a byte which contains the

value zero: '\O'. The programmer rarely gets to 'see'

this end marker, as most functions which handle

strings use it or add it automatically.

Strings can be declared in two main ways. First, as

an array of characters and second, as a pointer to

some pre-assigned array.

Perhaps the simplest way of seeing how C stores

arrays is to give an extreme example which would

probably never be used in practice! Think of how a

string called 'string' might be used to store the

message 'Tedious!'. The knowledge that a string is

an array of characters might lead a programmer to

write something like:

#define length 9;

main ()

char string[length];

string[O] 'T' ;

string[l] 'e' ;
string[2] 'd' ;

string[3] 'i, ;

string [4] 'o' ;
string[S] 'u, ;
string[6] 's' ;
string[7] \ ! I i

string[8] '\ 0, ;

printf (" %s", string);

This method of handling strings is perfectly

acceptable, if there is time to waste, but it is so

laborious that C provides a special initialisation

service for strings, which bypasses the need to assign

every single character with a new assignment! There

20-STRINGS

C - A DABHAND GffiDE

are six ways of assigning constant strings to arrays. A

constant string is one which is actually typed into

the program, not one which is typed in by the user.

They are written into a short compilable program,

listing 20.2. The explanation follows after.

Listing 20.2. String initialisation.

/***/

/*

/* String Initialisation

I*

*/

*/

*/

/***/

char *global_stringl = "A string declared as a pointer";

char global_string2(] ="Declared as an array";

main ()

char *auto_string ="initializer ... ";

static char *stat_strng = "initializer ... ";

static char statarraystr[] ="initializer ";

/*char arraystr[] ="initializer "; IS ILLEGAL! */

/* This is because the array is an "auto" type */

/*which cannot be preinitialized, but... */

char arraystr[20];

printf ("%s %s", global_stringl, global_string2);

printf (" %s %s %s", auto_string, stat_strng,

statarraystr) ;

/* end */

•

The details of what goes on with strings can be

difficult to grasp for a newcomer to C. It is worth

being totally familiar with pointers and arrays before

reading the explanations that follow. Notice the

diagrams too - they are probably more helpful than

words .

The first of these assignments is a global, static

variable, or more correctly, it is a pointer to a global,

static array. Static variables are assigned storage

space in the body of a program when the compiler

creates the executable code. This means that they

are saved on disc along with the program code, so

they can be initialised at compile time . That is the

reason for the rule which says, only static arrays can

be initialised with a constant expression in a

declaration. The first statement allocates space for a

pointer to an array. Notice that, because the string

which is to be assigned to it is typed into the

program, the compiler can also allocate space for

that in the executable file too. In fact, the compiler

stores the string, adds a zero byte to the end of it

and assigns a pointer to its first character to the

variable called global_stringl .

The second statement works almost identically, with

the exception that, this time the compiler sees the

declaration of a static array, which is to be initialised.

Notice that there is no size declaration in the square

brackets. This is quite legal - the compiler counts

the number of characters in the initialisation string

and allocates just the right amount of space, filling

the string into that space, along with its end marker

as it goes. Remember also that the name of the array

is a pointer to the first character, so, in fact, the two

methods are identical.

The third expression is the same kind of thing, only

this time the declaration is inside the function

main(), so the type is not static but auto. The

difference between this and the other two

declarations is that this pointer variable is created

every time the function main() is called. It is new

each time - the same thing holds for any other

function which it might have been defined in. When

20- STRINGS

•

C - A DABHAND GmDE

II

the function is called, the pointer is created and

when it ends, it is destroyed. The string which

initialises it is stored in the executable file of the

program (because it is typed into the text). The

compiler returns a value which is a pointer to the

string's first character and uses that as a value to

initialise the pointer. This is a slightly round about

way of defining the string constant. The normal

thing to do would be to declare the string pointer as

being static, but this is just a matter of style. In fact

this is exactly what is done in the fourth example.

The fifth example is again identical, in practice to

other static types, but is written as an 'open' array

with an unspecified size.

The sixth example is forbidden! The reason for this

might seem rather trivial, but it is made in the

interests of efficiency. The array declared is of type

auto - the whole array is created when the function

is called and destroyed afterwards. Auto-arrays can't

be initialised with a string (see Chapter 19) because

they would have to be re-initialised every time the

array were created - that is, each time the function

were cafled . The final example could be used to

overcome this, if the programmer were inclined to

do so. Here an auto-array of characters is declared

(with a size this time, because there is nothing for

the compiler to count the size of). There is no single

assignment which will fill this array with a string

though - the programmer would have to do it

character by character so that the inefficiency is

made as plain as possible!

Arrays of Strings
In Chapter 19, programs progressed from one­

dimensional arrays to two-dimensional arrays, or

arrays of arrays! The same thing works well for

strings which are declared static. Programs can take

advantage of C's easy assignment facilities to let the

compiler count the size of the string arrays and

define arrays of messages. For example listing 20.3

prints out a menu for an application program:

Listing 20.3. Print a menu.

20-STRINGS

/***/

/*

/* MENU

/*

program which prints out a menu

*/

*/

*/

/***/

main ()

int str_number;

for (str_number 0; str number < 13; str_number++)

printf (" %s",menutext(str_number));

/***/

char *menutext(n) /* return n-th string ptr */

int n;

static char *t[]

•

C - A DABHAND GillDE

\n",

" I ++ MENU ++ l\n",

" I ------------ I \n",
" I (1) Edit Defaults I \n",

" I (2) Print Charge Sheet I \n",

" I (3) Print Log Sheet I \n",
" I (4) Bill Calculator I \n",
" I (q) Quit I \n",
" I l\n",
" I l\n",
" I Please Enter Choice I \n",
" I I \n",

" \n"
} i

return (t [n]);

Notice the way the static declaration works. It is

initialised once at compile time, so there is

effectively only one statement in this function and

that is the return() function. This function retains

the pointer information from call to call.

The morse coder program from Chapter 17 could

be rewritten more economically using static strings.

Listing 20.4. Static string array.

/**/

/*

/* static string array

/*

*/

*/

*/

/**/

/* Morse code program. Enter a number and */

/* find out what it is in Morse code */

#include <stdio.h>

#define code 0

/***/

•

20-STRINGS

main ()

short digit;

printf ("Enter any digit in the range 0 .. 9");

scanf ("%h",&digit);

if ((digit < 0) I I (digit > 9))

{

printf ("Number was not in range 0 .. 9");

return (code);

printf ("The Morse code of that digit is");

Morse (digit);

/**/

Morse (digit)

short digit;

/* print out Morse code */

static char *code[]

"dummy",

" ,
" '

} ;

" ,
" • • • I

" . . ,
" . ,

/* index starts at 0 */

printf (" %s\n",code[digit]);

II

C - A DABHAND GIBDE

Strings from the User
All the strings mentioned so far have been typed

into a program by the programmer and stored in a

program file, so it has not been neces.sary to worry

about where they were stored. However, it is just as

often neces.sary to fetch a string from the user and

store it somewhere in the memory for later use. It

might even be necessary to get a whole bunch of

strings and store them all. But how will the program

know in advance how much array space to allocate

to these strings? The answer is that it won't and it

doesn't matter at all!

One way of getting a simple, single string from the

user is to define an array and to read the characters

one by one. An example of this was the Game of

Life program in Chapter 19:

1) Define the array to be a certain size.

2) Check that the user does not type in too many

characters.

3) Use the string in that array.

Another way is to define a static string with an

initialiser as in the following example. The function

filename asks the user to type in a file-name, for

loading or saving by and return it to a calling

function:
char *filename()

do

•

static char *filerun = "•....•.•.•.•..•••••• ";

printf ("Enter filename :");

scanf ("%24s",filenm);

skipgarb();

while (strlen(filenm) 0);

return (filenm);

The string is made static and given an initialising

expression and this forces the compiler to make

some space for the string. It makes exactly 24

characters plus a zero byte in the program file, which

can be used by an application. Notice that the

conversion string in scanf prevents the characters

from spilling over the bounds of the string. The

function strlen is a standard library function - it

returns the length of a string. 'skipgarb' is the

function which was introduced in Chapter 15.

Neither of thsee methods is very useful if a program

is going to be fetching a lot of strings from a user. It

isn't practical to define lots of static strings and

expect the user to type into the right size boxes! The

next step in string handling is, therefore, to allocate

memory for strings personally. In other words to be

able to say how much storage is needed for a string

while a program is running. C has special memory

allocation functions which can do this, not only for

strings but for any kind of object.

Suppose then that a program is going to get 10

strings from the user. Here is one way in which it

could be done:

1) Define one large, static string (or array) for

getting one string at a time . Call this a string

buffer, or waiting place .

2) Define an array of 10 pointers to characters, so

that the strings can be recalled easily.

3) Find out how long the string in the string buffer

lS.

20-STIUNGS

II

C - A DABHAND GUIDE

•

4) Allocate memory for the string.

5) Copy the string from the buffer to the new

storage and place a pointer to it in the array of

pointers for reference.

6) Release the memory when it is finished with.

The function which allocates memory in C is

probably called 'malloc' (check individual compiler

manuals for this) and it works like this:

1) malloc should be declared as returning the type

pointer to character, with the statement:

char *malloc();

2) malloc takes one argument which should be an

unsigned integer value telling the function how

many bytes of storage to allocate. It returns a

pointer to the first memory location in that

storage position:

char *ptr;

unsigned int size;

ptr = malloc(size);

(1) malloc () creates some storage and returns

A pointer to it

(2) This pointer is assi9ned to a pointer variable.
ptr = malloc (size)

20-STRINGS

...

~ .---------------------------------

L_""_J ,.'f'I GARBAGE -------------------------
........

STRING NAME) (ACTUAL STORAGE)

3) Finally the storage is filled with meaningful characters using strcpy ();

~ I "Hello World!. . . \n .. ." \ 0

~ .-~~--------~--~

Figure 20.1. Strings from the user.

t
zero byte
end marker

3) The pointer returned has the value NULL (==0)

if there was no memory left to allocate. This

should always be checked.

C - A DABHAND GUIDE

.----

The fact that malloc always returns a pointer to a

character doesn't stop it from being used for other

types of data too. The cast operator can force malloc

to give a pointer to any data type. This method is

used for building data structures in C with 'struct'

types.

malloc has a complementary function which does

precisely the opposite - de-allocates memory. This

function is called 'free'. free returns an integer code,

so it does not have to be declared as being any

special type:

I) free takes one argument: a pointer to a block of

memory which has previously been allocated by

malloc:

int returncode;

returncode =free (ptr);

Note that on many UNIX systems, this return code

is garbage.

2) The pointer should be declared:

char *ptr;

3) The return code is zero if the release was

successful.

An example of how strings can be created using

malloc and free is given next. First of all, some

explanation of standard library functions is useful to

simplify the program.

Handling Strings
The C standard library commonly provides a

number of very useful functions which handle

strings. Here is a short list of some common ones

which are immediately relevant (there are more in

the following chapter). Chances are, a good

compiler will support a lot more than those listed,

but it depends upon the compiler. On some

compilers (eg UNIX) you must

#include <string-h> or #include <strings.h>

to declare these functions.

strlcn() This function returns a type int value,

which gives the length or number of

characters in a string, not including the

null byte end marker. An example is:

int len;

char *string;

len = strlen (string);

strcpy() This function copies a string from one

place to another. Use this function in

preference to custom routines: it is set up

to handle any peculiarities in the way data

are stored. An example is:

char *to,*from;

to= strcpy (to,from);

Where 'to' is a pointer to the place to

which the string is to be copied and 'from'

is the place where the string is to be copied

from .

strcmp()This function compares two strings and

returns a value which indicates how they

compared. An example:

int value;

char *sl,*s2;

value= strcmp(sl,s2);

Tlie value returned is zero if the two

strings were identical. If the strings were

not the same, this function indicates the

(ASCII) alphabetical order of the two. Sl

20-STRINGS

C - A DABHAND GlTIDE

•

> s2, alphabetically, then the value is >0. If

sl < s2 then the value is <0. Note numbers

come before letters in the ASCII code

sequence and upper case is before lower

case.

More string functions are described in the next

chapter along with a host of standard library

functions.

The program in listing 20.5 aims to get 10 strings

from the user. The strings may not contain any

spaces or white space characters. It works as follows:

The user is prompted for a string which he/she

types into a buffer. The length of the string is tested

with strlen, and a block of memory is allocated for it

using malloc. Notice that this block of memory is

one byte longer than the value returned by strlen,

because strlen() does not count the end of string

marker '\O'. Malloc returns a pointer to the space

allocated, which is then stored in the array called

'array'. Finally, the string is copied from the buffer

to the new storage with the library function strcpy.

This process is repeated for each of the 10 strings.

Notice that the program exits through a low-level

function called QuitSafely. The reason for doing this

is to exit from the program neatly, while at the same

time remembering to perform all of a programmer's

duties, such as de-allocating the memory which is no

longer needed. QuitSafely uses the function exit

which should be provided as a standard library

function. exit can end a program at any point .

20-STRINGS

Listing 20.5. String storage allocation.

/***/

/*

/* String storage allocation

/*

*/

*/

*I
/***/

#include <stdio.h>

/* #include another file for malloc() and */

/* strlen() ???. Check the compiler manual! */

#define noofstr 10

#define bufsize 255

#define code 0

/********** * **************************************/

/* Level 0 */

/***/

main ()

char *array[noofstr], *malloc();

char buffer[bufsize];

int i;

for (i = 0; i < noofstr; i++)

printf ("Enter string %d :",i);

scanf (" %255s", buffer);

array[i] malloc(strlen(buffer)+l);

if (array[i] NULL)

printf ("Can't allocate rremory\n");

QuitSafely (array);

C - A DAB HAND GUIDE

strcpy (array(i],buffer);

for (i = 0; i < noofstr; i++)

printf ("%s\n",array[i]);

QuitSafely(array);

/***/

/* Snakes & Ladders! */

/***/

•

QuitSafely (array) /* Quit & de-alloc memory */

char *array[noofstr];

int i, len;

for (i 0; i < noofstr; i++)

len = strlen(array[i]) + l;

if (free (array[i]) != 0)

printf ("Debug: free failed\n");

exit (code);

I* end */

String Input/Output
Because strings are recognised to be special in C,

some special library functions for reading and

writing are provided for them. These make it easier

to deal with strings, without the need for special

user routines. There are four of these functions:

gets()

puts()

sprintf ()

sscanf ()

gets()
This function fetches a string from the standard

input file stdio and places it into some buffer which

the programmer must provide:

#define size 255

char *sptr, buffer[size];

strptr = gets(buffer);

If the routine is successful in getting a string, it

returns the value 'buffer' to the string pointer

'strptr'. Otherwise it returns null (==0). The

advantage of gets over scanf\"%s" ..) is that gets will

read spaces in strings, whereas scanf will not. gets

quits reading when it finds a new line character: that

is, when the user presses RETURN.

puts()
puts sends a string to the output file stdout, until it

finds a null end of string marker. The null byte is

not written to stdout, instead a new line character is

written:

char *string;

int returncode;

returncode = puts(string);

20-STRINGS

•

C - A DABHAND GUIDE

•

Puts returns an integer value, whose value is only

guaranteed if there is an error. Returncode == EOF

if an end of file was encountered or there was an

error.

sprintf()
This is an interesting function which works in almost

the same way as printf(), the exception being that it

prints to a string. In other words, it treats a string as

though it were an output file. This is useful for

creating formatted strings in the computer's

memory. It works in the following way:

int n;

char *ds;

n = sprintf (ds, "control string", pararreters, values);

n is an integer which is the number of characters

printed; ds is a pointer to the 'destination string' or

the string which is to be written to.

Note carefully, that this function does not perform

any check on the output string to make sure that it

is long enough to contain the formatted output. If

the string is not large enough, then a crash could be

in store!

See Chapter 39 on UNIX for a special note on

sprintf()

sscanf()
This function is the complement of sprintf. It reads

its input from a string, as though it were an input

file:

int n;

char *ss;

n = sscanf (ss,"control string", pointers ...);

,
ss is a pointer to the string which is to be read from .

The string must be null terminated (it must have a

zero byte end marker '\O').sscanf returns an integer

value which holds the number of items successfully

matched, or EOF, if an end of file marker was read

or an error occurred. The conversion specifiers are

identical to those for scanf.

Listing 20.6. Formatted strings.

20-STIUNGS

/**/

/*

/* Formatted strings

/*

*/

*/

*I
/**/

/* program rewrites sl in reverse into s2 */

#include <stdio.h>

#define size 20

#define code 0

/**/

main ()

static char *sl = "string 2.3 SSx";

static char *s2 = " ";
char ch, *string[size];

int i,n;

float x;

sscanf (sl,"%s %f %d %c", string, &x, &i, &ch);

n = sprintf (s2,"%c %d %f %s", ch, i, x, string);

if (n > size)

printf ("Error: string overflowed!\n");

exit (code);

puts (s2);

•

C - A DABHAND GUIDE

•

Questions:
I) What are the two main ways of declaring strings

in a program?

2) How would you declare a static array of strings?

3) Write a program which gets a number between

zero and nine and prints out a different message

for each number. Use a pre-initialised array to

store the strings .

m Functions Be
Macros

Checking Character Types

Handling Strings

Doing Maths
C provides a repertoire of standard library functions

and macros for specialised purposes, and for the

advanced user. These may be divided into three

categories:

1) Character identification: (ctype.h)

2) String manipulation: (string.h)

3) Mathematical functions: (math.h)

•

C - A DABHAND GUIDE

•

A program has to include header files in order to use

special functions. The names of the appropriate files

can be found in compiler manuals. They commonly

take the names given in brackets, ie, ctype.h, string.h

and math.h.

Character Identification
Some or all of the following functions/macros will

be available for identifying and classifying single

characters. The programmer ought to be aware that

it is natural for many of these facilities to exist as

macros rather than functions, so the usual remarks

about macro parameters apply (see Chapter 13 on

the pre-processor for more information).

Assume that 'true' has any non-zero, integer value

and that 'false' has the integer value zero. The 'ch'

in brackets stands for some character, or char type

variable.

Function/Macro Description

isalpha(ch) This returns true if ch is alphabetic

and false otherwise. Alphabetic

means a to z, or A to Z

is upper(ch)

islower(ch)

isdigit(ch)

isxdigi t(ch)

Returns true if the character is upper

case . If ch is not an alphabetic

character, this returns false

Returns true if the character is lower

case . If ch is not an alphabetic

character, this returns false.

Returns true if the character is a

digit in the range zero to nine

Returns true if the character is a

valid hexadecimal digit, that is, a

number from zero to nine or a letter

a to for A to F

21 - SPECIAL FUNCTIONS AND MACROS

Function/Mam> Description

isspace(ch) Returns true if the character was a

white space character, ie, a space,

tab character or a new line

ispunct(ch) Returns true if ch is a punctuation

character

isalnurn(ch) Returns true if a character is

alphanumeric, that is, alphabetic or

digit

isprint(ch) Returns true if the character is

printable, that is, the character is

not a control character

is graph(ch)

iscn trl(ch)

isascii(ch)

iscsym(ch)

Returns true if the character is

graphic, ie, if the character is

printable (excluding the space)

Returns true if the character is a

control character, ie, ASCII values

zero to 31 and 127

Returns true if the character is a

valid ASCII character, that is, it has

a code in the range 0 to 127

Returns true if the character is a

character which could be used in a

C identifier

toupper(ch) This converts the character ch into

its upper case counterpart. This does

not affect characters which are

already upper case, or characters

which do not have a particular case,

such as digits

II

C ~A DABHAND GUIDE

tolower(ch)

toascii(ch)

This converts a character into its

lower case counterpart. It does not

affect characters which are already

lower case

This strips off bit 7 of a character so

that it is in the range zero to 127,

that is, a valid ASCII character

Listing 21..1. Character utility functions.

/***/
/* */

/* Demonstration of character utility functions */

/* */

/***/
/* prints out all the ASCII characters which give */

/* the value "true" for the listed character fns */

#include <stdio.h>

#include <ctype.h> /* contains character utilities */

#define allchars ch= O; isascii(ch); ch++

/***/
main () /* A criminally long main program! */

char ch;

printf ("VALID CHARACTERS FROM isalpha () \n\n");

for (allchars)

if (isalpha(ch))

printf ("%c ",ch);

printf ("\n\nVALID CHARACTERS FROM isupper() \n\n");

•

21 - SPECIAL FUNCTIONS AND MACROS

for (allchars)

if (isupper (ch))

printf ("%c ",ch);

printf ("\n\nVALID CHARACTERS FROM islower() \n\n");

for (allchars)

if (islower(ch))

printf ("%c ",ch);

printf ("\n\nVALID CHARACTERS FROM isdigit () \n\n");

for (allchars)

if (isdigit (ch))

{

printf ("%c ",ch);

printf ("\n\nVALID CHARACTERS FROM isxdigit () \n\n");

for (allchars)

if (isxdigit(ch))

printf ("%c ",ch);

C - A DABHAND GUIDE

printf ("\n\nVALID CHARACTERS FROM ispunct () \n\n");

for (allchars)

if (ispunct(ch))

printf (" %c ",ch);

printf ("\n\nVALID CHARACTERS FROM isalnum() \n\n");

for (allchars)

if (isalnum (ch))

printf (" %c " ,ch);

printf ("\n\nVALID CHARACTERS FROM iscsym() \n\n");

for (allchars)

if (iscsym(ch))

{

printf (" %c ",ch);

Output
VALID CHARACTERS FROM isalpha()

A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z a b c d

e f g h i j k 1 m n o p q r s t u v w x y z

•

21 - SPECIAL FUNCTIONS AND MACROS

VALID CHARACTERS FROM isupper ()

ABCDEFGHIJKLMNOPQRSTUVWXYZ

VALID CHARACTERS FROM islower ()

a b c d e f g h i j k l m n o p q r s t u v w x y z

VALID CHARACTERS FROM isdigit()

0 1 2 3 4 5 6 7 8 9

VALID CHARACTERS FROM isxdigit()

0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

VALID CHARACTERS FROM ispunct()

"#$%&'()*+,-./:

} -
VALID CHARACTERS FROM isalnum()

< = > ? @ [\ l A , { I

0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N 0 P Q R S T

U V W X Y Z a b c d e f g h i j k 1 m n o p q r s t u v w x

y z

VALID CHARACTERS FROM iscsym ()

0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N 0 P Q R S T

U V W X Y Z a b c d e f g h i j k 1 m n o p q r s t u v w

x y z

String Manipulation
The following functions perform useful functions for

string handling (See Chapter 20 on strings for more

information).

Function Description

strcat() This function 'concatenates' two strings,

that is, it joins them together into one

string. The effect of:

II

C - A DABHAND GmDE

•

char *new,*this, onto[255];

new= strcat(onto,this);

is to join the string 'this' onto the string

'onto'. 'new' is a pointer to the complete

string - it is identical to 'onto'. Memory is

assumed to have been allocated for the

starting strings. The string which is to be
copied to must be large enough to accept

the new string tagged onto the end. If it is

not, then unpredictable effects will result .

(In some programs the user might get

away without declaring enough space for

the 'onto' string, but in general the results

will be garbage, or even a crashed

machine.)

To join two static strings together, the

following code is required:

char *sl

char *s2

main ()

"string one";

"string two";

char buffer[255];

strcat(buffer,sl);

strcat(buffer,s2);

buffer would then contain 'string onestring

two' .

21 - SPECIAL FUNCTIONS AND MACROS

strlcn() This function returns a type int value,

which gives the length or number of

characters in a string, not including the

NULL byte end-marker. An example is:

int len;

char *string;

len = strlen (string);

strcpy() This function copies a string from one

place to another . Use this function in

preference to custom routines. It is set up

to handle any peculiarities in the way data

is stored. An example is:

char *to,*from;

to= strcpy (to,from);

Where 'to' is a pointer to the place to

which the string is to be copied and 'from'

is the place where the string is to be copied

from .

strcmp() This function compares two strings and

returns a value which indicates how they

compared. An example:

int value;

char *sl,*s2;

value= strcmp(sl,s2);

The value returned is zero, if the two

strings are identical. If the strings are not

the same, this function indicates the

(ASCII) alphabetical order of the two. If
sl > s2, alphabetically, then the value is

>0. If sl < s2, then the value is <0. Note

that numbers come before letters in the

II

C - A DABHAND GUIDE

•

ASCII code sequence and also that upper

case comes before lower case.

There are also variations on the theme of the

aforementioned functions which begin with 'strn'

instead of 'str'. These enable the programmer to

perform the same actions with the first 'n' characters

of a string.

strncat() This function 'concatenates' two strings

by copying the first n characters of 'this'

to the end of the 'onto' string.

char *onto,*new,*this;

new= strncat(onto,this,n);

strncpy() This function copies the first n characters

of a string from one place to another.

char *to,*from;

int n;

to= strncpy (to,from,n);

strncmp() This function compares the first n

characters of two strings

int value;

char *sl,*s2;

value= strcmp(sl,s2,n);

The following functions perform conversions

between strings and floating point/integer types,

without needing to use sscanf. They take a pre­

initialised string and work out the value represented

by that particular string.

atof() ASCII to floating point conversion :

double x;

char *stringptr;

x = atof(stringptr);

21 - SPECIAL FUNCTIONS AND MACROS

atoi() ASCII to integer conversion:

int i;

char *stringptr;

i atoi(stringptr);

atol() ASCII to long integer conversion:

long i;

char *stringptr;

i = atol(stringptr);

Listing 21.2. String comparison.

/*******************************!*****************/

I*
/* String comparison

/*

*/

*/

*/

/***/

#include <stdio . h>

#define true 1

#define maxlen 30

/***/

main ()

char stringl[maxlen],string2[maxlen];

int result;

while (true)

printf ("Type in string l:\n\n");

scanf ("%30s",stringl);

•

C - A DABHAND GUIDE

printf ("Type in string 2:\n\n");

scanf ("%30s",string2);

result= strcmp (stringl,string2);

if (result == 0)

printf ("Those strings were the same!\n");

if (result > 0)

printf ("stringl > string2\n");

if (result < 0)

printf ("stringl <string 2\n");

. ----

Mathematical Functions
C has a library of standard mathematical functions

which should be accessed by including the

appropriate header files ('math .h' and so on). Note

that all of these functions work with 'double' or

'long float' type variables. All of C's mathematical

capabilities are written for long variable types. Here

is a list of the functions which can be expected in the

standard library file . The variables used are all to be
declared 'long'

int i; /* long int */

double x,y,result; /* long float */

The functions themselves must be declared long

float or double (which is done automatically in the
mathematics include file, math.h') and any constants

21 - SPECIAL FUNCTIONS AND MACROS

must be written in floating point form - for

instance, write 7 .0 instead of just 7. If you fail to

observe these rules, your programs might well

produce garbage but C will nto warn you of this.

Function Description

abs() Macro returns the unsigned value of the

value in brackets. See fabs() for a function

version.

fabs() Find the absolute or unsigned value of the

value in brackets:

result= fabs(x);

ceil() Find out what the 'ceiling' integer is, that

is, the integer which is just above the value

in brackets. This is like rounding up:

i = ceil(x);/* ceil (2.2) is 3 */

floor() Find out what the floor integer is, that is,

the integer which is just below the floating

point value in brackets:

i = floor(x); /* floor(2.2) is 2 */

exp() Find the exponential value:

result

result

e xp (x);

exp (2. 7);

log() Find the natural (Naperian) logarithm .

The value used in the brackets must be

unsigned, that is, it must be greater than

zero . It does not have to be declared

unsigned:

result

result

log (x) ;

log (2. 71828) ;

loglO() Find the base 10 logarithm . The value

used in the brackets must be unsigned,

that is, it must be greater than zero. It

•

C - A DABHAND GUIDE

•

does not have to be declared specifically as

unsigned:

result

result

loglO (x) ;

logl0(10000);

pow() _ Raise a number to the power. (As x"y in

BASIC):
result pow(x,y); /*raise x to the power y */

result pow(x,2); /*find x-squared */

result pow(2.0,3.2); /*find 2 to the power 3.2 ... */

sqrt() Find the square root of a number:

result

result

sqrt (x) ;

sqrt(2.0);

sin() Find the sine of the angle in radians:

result

result

sin (x);

sin(3.14);

cos() Find the cosine of the angle in radians:

result

result

cos(x);

cos(3.14);

tan() Find the tangent of the angle in radians:

asin()

a cos()

a tan()

result

result

tan (x);

tan(3.14);

Find the arc-sine or inverse sine of the

value which must lie between + 1.0 and -

1.0:

result

result

as in (x);

asin(l.0);

Find the arc-cosine or inverse cosine of

the value which must lie between +1.0

and -1.0:

result

result

acos (x);

acos (1. 0);

Find the arc-tangent or inverse tangent of

the value:

21 - SPECIAL FUNCTIONS AND MACROS

result

result

atan(x);

atan(200.0);

atan2() This is a special inverse tangent function

for calculating the inverse tangent of X

divided by Y. This function is set up to

find this result more accurately than

atan():

sinh()

result

result

atan2 (x, y);

atan2(x/3.14);

Find the hyperbolic sine of the value,

pronounced 'shine' or 'sinch' :

result

result

sinh(x);

sinh (5. 0);

cosh() Find the hyperbolic cosine of the value:

result

result

cosh (x);

cosh(5.0);

tanh() Find the hyperbolic tangent of the value :

result

result

tanh(x);

tanh (5. 0);

Note : The header file 'limits .h' might not be

relevant in your implementation of C. If so, omit the

#include statements which call it.

Listing 21.3. Maths function demo #2.

/***/
/*

/* Maths functions demo #1

/*

*I
*/

*I
/***/

I* use sin(x) to work out an animated model */

#include <stdio.h>

#include <math.h>

#include <limits.h>

•

C - A DABHAND GUIDE

fdefine true 1

fdefine amplitude 30

fdefine inc 0.02

double pi; /* this may already be defined */

I* in the math file */

/***/

/* Level 0 */

/***/

main () /* The simple pendulum program */

pi asin(l.0)*2; /* if PI is not defined */

printf ("\nTHE SIMPLE PENDULUM:\n\n\n");

Pendulum() ;

/***/

/* Level 1 */

/***/

Pendulum ()

double x, twopi

int i,position;

while (true)

pi * 2;

for (x = O; x < twopi; x += inc)

position (int) (amplitude* sin(x));

for (i -arrplitude; i <= arrplitude; i++)

II

21 - SPECIAL FUNCfIONS AND MACROS

if (i position)

putchar('*');

else

put char (' ') ;

startofline ();

/***/

/* Toolkit */

/***/

startofline ()

putchar ('\r') ;

Mathematical Errors
Mathematical functions can be delicate animals .

There are mathematical functions which simply

cannot produce sensible answers in all possible cases.

Mathematical functions are not 'user friendly'! One

example of an unfriendly function is the inverse sine

function, asin(x), which only works for values of X

in the range +1.0 to -1.0 . The reason for this is a

mathematical one - the sine function (of which asin

is the opposite) only has values in this range. The

statement:

y = asin (25.3);

•

C - A DABHAND GUIDE

II

is nonsense, and it cannot possibly produce a value

for Y, because none exists . Similarly, there is no

simple number which is the square root of a negative

value, so an expression such as:

x = sqrt(-2.0);

would also be nonsense. This doesn't stop you from

writing these statements though, and it doesn't stop

a faulty program from straying out of bounds. What

happens then, when an erroneous statement is

executed? Some sort of error condition would

certainly have to be the result.

In many languages errors are terminal - they cause a

program to stop without any option to recover the

damage. In C, as the reader might have come to

expect, this is not the case . It is possible (in

principle) to recover from any error, while still

maintaining in total firm control of a program.

Errors like the ones above are called domain errors

(the set of values which a function can accept is

called the domain of the function) . There are other

errors which can occur too. For example, division by
zero is illegal, because dividing by zero is

'mathematical nonsense' - it can be done, but the

answer can be all the numbers which exist at the

same time! Obviously a program can't work with

any idea as vague as this . Finally, in addition to these

'pathological' cases, mathematical operations can fail

just because the numbers they deal with get too

large or small for the computer to handle.

Error Type Comment

Domain error Illegal value put into function

Division by zero Dividing by zero is nonsense.

Overflow Number became too large

21 - SPECIAL FUNCTIONS AND MACROS

Error Type Comment

Underflow Number became too small.

Loss of accuracy No meaningful answer could be

calculated

The best error trapper is the alert programme.

Numerical users are usually very careful about

testing their programs with simple values to check

that they are working sensibly, but things can still go

wrong mysteriously.

Errors may be investigated by calling the function

matherr. The mathematical functions, listed above,

call this function automatically when an error is

detected. The function responds by returning a

value which gives information about the error. The

exact details will depend upon a given compiler.

Here's a hypothetical example to illustrate this - if

the error could be recovered from, matherr returns

0, otherwise it returns -1. matherr uses a 'struct'

type variable called an 'exception' to diagnose faults

in mathematical functions. (See Chapter 26 :

Structures and Unions) . This can be examined by

programs which trap their errors dutifully .

Information about this structure must be found in a

given compiler manual.

Although it is not possible to generalise, the

following remarks about the behaviour of

mathematical functions may help to avoid any

surprises about their behaviour in error conditions:

I) A function which fails to produce a sensible

answer, for any of the reasons mentioned, might

simply return zero or it might return the

maximum value of the computer. Be careful to

check this . (Division by zero and underflow

probably return zero, whereas overflow returns

•

C - A DABHAND GUIDE

the maximum value which the computer can

handle.)

2) Some method of signalling errors must clearly

be used. This is the exception 'structure' (a

special kind of C variable) which gives

information about the last error which occurred .

Find out what it is and trap errors!

3) Obviously, wherever possible, you shouldn't let

errors occur in the first place.

Let us state for the record that the single most
common cause of maths errors is incorrect
declarations, eg forgetting to #include<math.h>
or writing numerical constants as 1 instead of 1.0

Here is an example for the mathematically-minded.

Program 21.4 below performs numerical integration

by the simplest possible method of adding up the

area under small strips of a graph of the function f(y)

= 2*y. The integral is found between the limits zero

and five and the exact answer is 25. (See diagram.)

The particular compiler used for this program

returns the largest number which can be represented

by the computer when numbers overflow, although,

in this simple case, it is impossible for the numbers

to overflow.
Listing 21.4. Numerical estimation of integral.

/***/
/*

/* Numerical Estimation of Integral

/*

*/

*/

*I
/***/

•
#include <stdio.h>

#include <math.h>

#include <limits.h>

21 - SPECIAL FUNCflONS AND MACROS

#define limit 5

double inc= 0.001; I* Incrercent width - arbitra:ry */

double twopi;

/***/

/** LEVEL 0 */

/***/

main {)

double y,integrand{);

double integral = O;

twopi

for (y

4 * asin(l.0);

inc/2; y < limit; y += inc

integral += integrand (y) * inc;

printf ("Integral value %.lOf \n",integral);

/***/

/** LEVEL 1 **/

/***/

double integrand (y)

double y;

{ double value;

value = 2*y;

if (value > le308)

•

C - A DABHAND GUIDE

II

printf ("Overflow error\n");

exit (0);

return (value);

More Examples
More examples of the uses of special library

functions can be found in the section on

programming examples (Chapter 30).

Questions:
1) What type of data 1s returned from

mathematical functions?

2) All calculations are performed using long

variables. True or false?

3) What information is returned by strlen()?

4) What action is performed by strcat()?

5) Name five different kinds of error which can

occur in a mathematical function .

Hidden
Operators

Tidying Up Programs

Writing Smaller Source

Files
Many operators in C are more versatile than they

appear to be at first glance. None of these operators

concerned are new - they have all been described in

Chapter 16, but up to now they have been used

cautiously. They are:

++ += -= (and so on)

the assignment, increment and decrement operators.

These innocent looking operators can be used in

C - A DABHAND GUIDE

II

some surprising ways, which make C source code

very neat and compact.

The first thing to notice is that ++ and - - are unary

operators, that is, they are applied to a single

variable and they affect that variable alone. They

therefore produce one unique value each time they

are used. The assignment operator, on the other

hand, has the unusual position of being both unary,

in the sense that it works out only one expression,

and also binary or dyadic because it sits between two

separate objects - an '!value' on the left-hand side

and an expression on the right-hand side. Both

kinds of operator have one thing in common

however - both form statements which have values

in their own right. What does this mean? It means

that certain kinds of C statements do not have to be

thought of as being complete and sealed off from

the rest of a program. To paraphrase John Donne:

'In C, no statement is an island'. A statement can be

taken as a whole - as a 'black box' - and can be

treated as a single value, which can be assigned and

compared to things! The value of a statement is the

result of the operation which was carried out in the

statement.

Increment/decrement operator statements, taken as

a whole, have a value which is one greater or one

less than the value of the variable which they act

upon. So:

c = 5;

c++;

The second of these statements ('c++;') has the

value six, and similarly:

c = 5;

c- -;

22 - HIDDEN OPERATORS

The second of these statements ('c- -;') has the value

four.

Entire assignment statements have values too. A

statement such as:

c = 5;

has the value which is the value of the assignment.

So the example above has the value five . This has

some important implications.

Extended and Hidden =
The idea that an assignment statement has a value,

can be used to make C programs neat and tidy for

one simple reason - it means that whole assignment

statements can be used in place of a value! For

instance, the value 'c = O;' could be assigned to a

variable b:

b= (c 0);

or simply:

b = c = 0;

These equivalent statements set band c to the value

zero, provided b and c are of the same type! It is

equivalent to the more usual:

b O;

c = 0;

Indeed, any number of these assignments can be

strung together:

a = (b = (c

or simply:

(d (e

a = b = c = d = e = 5;

5))))

This very neat syntax compresses five lines of code

into one line!

•

C - A DABHAND GUIDE

•

There are other uses for the valued assignment

statement, of course. It can be used anywhere where

a value can be used . For instance:

1) In other assignments

2) As a parameter for functions

3) Inside a comparison (== > <etc.)

4) As an index for arrays

The uses are many-fold. Consider how an

assignment statement might be used as a parameter

to a function. The next example gets a character

from the input file stdin and passes it to a function

called 'ProcessCharacter':

ProcessCharacter (ch= getchar());

This is a perfectly valid statement in C, because the

hidden assignment statement passes on the value

which it assigns. The actual order of events is that

the assignment is carried out first and then the

function is called. It would not make sense the other

way around, because, that way around, there would

be no value to pass as a parameter. So this is a more

compact way of writing:

ch= getchar();

ProcessCharacter (ch);

The two methods are entirely equivalent. If you've

any doubt, examine a little more of this imaginary

character processing program:

ProcessCharacter(ch

if (ch == '*')

getchar());

printf ("Starry, Starry Night ... ");

The purpose in adding the second statement is to

impress the fact that ch has been assigned quite

22 - HIDDEN OPERATORS

legitimately and it is still defined in the next

statement, and the one after, until it is re-assigned

by a new assignment statement. The fact that the

assignment was hidden inside another statement

does not make it any less valid. All the same remarks

apply about the specialised assignment operators +=

*=/=etc.

Listing 22.1. Hidden assignment #1.

/**/

/*

/* Hidden Assignment #1

/*

*/

*/

*I
/**/

main ()

do

switch (ch

{

get char ())

default putchar (ch) ;

break;

case 'Q' /* Quit */

while (ch ! = 'Q');

/* end */

II

C - A DABHAND GUIDE

Listing 22.2. Hidden Assignment #2.

/**/
/*

/* Hidden Assignment #2

/*

*I
*/

*I
/**/

•

main ()

double x 0;

while ((x += 0.2) < 20.0)

printf (Q%lf",x);

/* end */

Hidden++/- -
The increment and decrement operators also form

statements which have intrinsic values and, like

assignment expressions, they can be hidden away in

inconspicuous places. These two operators are

slightly more complicated than assignments because

they exist in two forms - as a postfix and as a prefix:

Postfix Prefix

var++ ++var

var-- --var

and these two forms have slightly different

meanings. Look at the following example:

int i = 3;

PrintNumber (i++);

The increment operator is hidden in the parameter

list of the function PrintNumber(). This example is

not as clear cut as the assignment statement

22 - HIDDEN OPERATORS

examples however, because the variable 'i' has both

a value before the ++ operator acting upon it, and a

different value afterwards. The question is then -

which value is passed to the function? Is 'i'

incremented before or after the function is called?

The answer is that this is where the two forms of the

operator come into play.

If the operator is used as a prefix, the
operation is performed before the function call.
If the operator is used as a postfix, the

operation is performed after the function call.

In the example the value three is passed to the

function and when the function returns, the value of

'i' is incremented to four . The alternative is to write:

int i = 3;

PrintNumber (++i);

in which case the value four is passed to the function

PrintNumber. The same remarks apply to the

decrement operator.

Arrays, Strings and Hidden

Operators
Arrays and strings are one area of programming in

which the increment and decrement operators are

used a lot. Hiding operators inside array subscripts

or hiding assignments inside loops can often make

light work of tasks such as array initialisation.

Consider the following example of a one­

dimensional array of integers:

#define size 20

inti, array[size];

for (i = O; i < size; array[i++] 0)

•

C - A DABHAND GtnDE

This is a neat way of initialising an array to zero .

Notice that the postfixed form of the increment

operator is used. This prevents the element array[O]

from assigning zero to memory which is out of the

bounds of the array. A lucky programmer might get

away with the prefixed form without any noticeable

damage to a program, but that would be sloppy

work, and programmers should worry about such

things as this.

Strings, too, can benefit from hidden operators. If

the standard library function strlen (which finds the

length of a string), were not available, then it would

be a simple matter to write the function for simply

connected memory (see remarks on arrays, Chapter

19):

strlen (string) /* count the characters in a string */

char *string;

char *ptr;

int count = 0;

for (ptr

{

string; * (ptr++) != NULL; count++)

return (count);

•

NULL is a macro which has the value zero. This

function increments count while the end of string

marker is not found .

22 - HIDDEN OPERATORS

Listing 22.3. Hidden operators demo #1.

/***/

/*

/* Hidden Operator Demo #1

/*

*/

*I

*I
/***/

/* Any assignnent or increment operator has a value */

/* which can be handed straight to printf() */

/* Also corrpare the prefix I postfix forms of ++/- */

#include <stdio.h>

/************ *************************************/
main ()

int a,b,c,d,e;

a = (b = (c = (d = (e = 0)))) ;

printf ("%d %d %d %d %d\n", a, b++, c-, d = 10, e += 3);

a = b = c = d = e = 0;

printf ("%d %d %d %d %d\n", a, ++b, -c, d = 10, e += 3);

/* end */

Listing 22.4. Hidden operator demo #2.

/***/

I*
/* Hidden Operator demo #2

/*

*/

*/

*/

/***/

#include <stdio . h>

/***/

II

C - A DABHAND GUIDE

main () /* prints out zero! */

printf ("%d",Value());

/***/

Value() /*Check for zero */

{ int value;

if ((value = GetValue ()) 0)

printf ("Value was zero\n");

return (value);

/***/

•

GetValue() /* Serre function to get a value */

return (0);

/* end */

Cautions about Style
Hiding operators away inside other statements can

certainly make programs look very elegant and

compact, but, as with all neat tricks, it can make

programs harder to understand. Never forget that

programming is about communication to other

programmers, so be kind to the potential reader of

22 - HIDDEN OPERATORS

your program! (It could be you in years to come!)

Statements such as:

if ((i = (int) ch++) <= --corrparison)

are not recommended programming style and they

are no more efficient than the more long-winded:

comparison-;

i = (int)ch;

if (i <= comparison)

ch++;

There is always a happy medium in which to settle

on a readable version of the code . The statement

above might perhaps be written as:

i = (int) ch++;

if (i <= -comparison)

Listing 22.5. Arrays and hidden operators.

/***/

I*
/* Arrays and Hidden Operators

/*

*/

*I
*I

/***/

#include <stdio.h>

#define size 10

•

C - A DABHAND GUIDE

/***/

/* Level 0 */

/***/

main () /* Demo prefix & postfix ++ in arrays */

inti, array[size];

Initialise(array);

i = 4;

array[i++] = 8;

Print (array);

Initialise(array);

i = 4;

array[++i] = 8;

Print (array) ;

/***/

/* Level 1 *I
/***/

Initialise (array)

int array[size];

int i;

/* set to zero */

for (i 0; i < size; array[i++] 0)

/***/

Print (array) /* to stdout */

int array[size];

•

22 - HIDDEN OPERATORS

int i = 0;

while (i < size)

printf ("%2d",array[i++]);

putchar ('\n');

/* end */

Listing 22.6. Hidden operator.

/***/
/*

/* Hidden Operator

I*

*I
*/
*/

/***/

#include <stdio.h>

#define maxno 20

/***/

main () /* Print out 5 x table */

{ int i, ctr 0;

for (i 1; ++ctr <= maxno; i ctr*S)

printf (" %3d",i);

•

C - A DABHAND GUIDE

II

Questions:
1) Which operators can be hidden inside other

statements?

2) Give a reason why you would not want to do

this in every possible case.

3) Hidden operators can be used in return

statements. For example:

return (++x);

Would there be any point in writing:

return (x++) ; ;

Advanced Data
Types

Special Constants

More Types

User Defined Data Types
This section is about the remaining data types which

C has to offer programmers. These extra data types

are for more advanced uses of the language. They

are called:

FILE The type which files are classified under

enum Enumerated type for abstract data

void The 'empty' type

C - A DABHAND GUIDE

•

volatile

const

struct

union

New ANSI standard type for memory

mapped I/O

New ANSI standard type for fixed data

Groups of variables under a single name

Multi-purpose storage areas

Special Constant
Expressions
Constant expressions are often used without any

thought, until a programmer needs to know how to

do something special with them. It is worth making

a brief remark about some special ways of writing

integer constants, for the latter half of this book.

Up to now the distinction between long and short

integer types has largely been ignored . Constant

values can be declared explicitly as long values, in

fact, by placing the letter L after the constant.

long int variable = 23L;

variable = 236526598L ;

Advanced programmers writing systems software

often find it convenient to work with hexadecimal or

octal numbers as these number bases have a special

relationship to binary. A constant in one of these

types is declared by placing either 'O' (zero) or 'Ox'

in front of the appropriate value. If ddd is a value,

then :

Octal number Oddd

Hexadecimal number Oxddd

For example:

oct value

hex value

077; /* 77 octal */

OxFFEF; /* FFEF hex */

23 -ADVANCED DATA TIPES

This kind of notation has already been applied to

strings and single character constants with the

backslash notation, instead of the leading 'O' (zero)

character:

ch '\ddd';

ch '\xdd';

The values of character constants can't be any

greater than 255.

FILE
In previous chapters, the files stdin, stdout and

stderr alone have been used in programs. These

special files are always handled implicitly by

functions like printf() and scanf{) - the programmer

never gets to know that they are, in fact, files.

Programs do not have to use these functions

however - standard input/output files can be

treated explicitly by general file handling functions

just as well . Files . are distinguished by filenames and

by file pointers. File pointers are variables which pass

the location of files to file handling functions; being

variables, they have to be declared as being some

data type. That type is called FILE and file pointers

have to be declared 'pointer to FILE'. For example:

FILE *fp;

FILE *fp = stdin;

FILE *fopen();

File handling functions which return file pointers

must also be declared as pointers to files. Notice

that, in contrast to all the other reserved words,

FILE is written in upper case. This is because FILE

is not a simple data, type such as char or int, but a

'structure' which is only defined by the

input/output file 'stdio.h' and so, strictly speaking,

•

C - A DABHAND GUIDE

II

it is not a reserved word itself. See chapter 24 for

comprehensive information about files .

en um
Abstract data are usually the realm of exclusively

high-level languages such as Pascal. 'enum' is a way

of incorporating limited 'high-level' data facilities
into C.

enum is short for enumerated data. The user defines

a type of data which is made up of a fixed set of

words, instead of numbers or characters. These

words are given substitute integer numbers by the

compiler which are used to identify and compare

'enum' type data.For example:

enum countries

England,

Scotland,

Wales,

Eire,

Norge,

Sverige,

Danmark,

Deutschland

} ;

main ()

{ enum countries variable;

variable = England;

Why go to all this trouble? The point about

enumerated data is that it they allow the

programmer to forget about any numbers which the

23 -ADVANCED DATA TIPBS

computer might need in order to deal with a list of

words, like the previous example, and simply

concentrate on the logic of using them. Enumerated

data are called 'abstract' because the low-level

number form of the words is removed from the

users attention. In fact, enumerated data are made

up of integer constants, which the compiler

generates itself. For this reason, they have a natural

partner in programs - the switch statement. Here is

an example, which uses the countries listed in the

program to make a kind of airport 'help computer'

in age of electronic passports!

Listing 23.1. Enumerated data.

/***/

/*

/* Enumerated Data

/*

*/

*/

*/

/***/

#include <stdio . h>

enum countries

England,

Ireland,

Scotland,

Wales,

Danmark,

Island,

Norge,

Sverige

} ;

/***/

C - A DABHAND GUIDE

main () /* Electronic Passport Program */

enum countries birthplace, getinfo();

printf ("Insert electronic passport\n");

birthplace= getinfo();

switch (birthplace)

case England

case Danmark

case Noi::ge

printf ("Welcome home! \n");

break;

printf ("Velkamen til Erqland\n") ;

break;

/***/

•

enum countries getinfo() /* interrogate passport */

return (England);

I* end */

'enum' makes words into constant integer values for

a programmer. Data which are declared enum, is not

the kind of data which it makes sense to do

arithmetic with (even integer arithmetic), so in most

cases it should not be necessary to know or even

care about what numbers the compiler gives to the

words in the list. However, some compilers allow

the programmer to force particular values on words.

The compiler then tries to give the values successive

integer numbers unless the programmer states

otherwise. For instance:

23 -ADVANCED DATA TYPES

enum planets

Mercury,

Venus,

Earth 12,

Mars,

Jupiter,

Saturn,

Uranus,

Neptune,

Pluto

} ;

This would probably yield values Mercury = 0,

Venus= 1, Earth= 12,

Mars= 13, Jupiter= 14 ... etc.

If the user tries to force a value which the compiler

has already used then the compiler will complain .

The following example program listing shows two

points:

I) en um types can be local or global

2) The words can be forced to have certain values

Listing 23.2. Enumerated data.

/***/

/*

/* Enumerated Data

/*

*/

*/

*/

/***/

/* The smallest adventure game in the world */

#include <stdio.h>

#define true 1

#define false 0

II

enum treasures

rubies,

sapphires,

gold,

silver,

mask,

scroll,

lamp

} ;

/* Adventure Treasures */

/***/

/* Level 0 */

/***/

main () /* Tiny Adventure! */

enum treasures object gold;

if (getobject(object))

printf ("Congratulations you've found the gold!\n");

else

printf ("Too bad you just missed your big-chance");

/***/

/* Level 1 */

/***/

IJ

23 -ADVANCED DATA TIPES

getobject (ob) /* yes or no ? */

enum treasures ob;

enum answer

no = false,

yes = true

} ;

if (ob == gold)

{

printf ("Pick up object? Y/N\n");

switch (getchar())

else

case 'y'

case 'Y'

default

return ((int) yes);

return ((int) no);

printf ("You grapple with the dirt\n");

return (false);

I* end */

Suggested uses for enum
Here are some suggested uses for en um:

enum numbers

zero,

one,

two,

•

C - A DABHAND GUIDE

II

three

} ;

enum animals

cat,

dog,

cow,

sheep,

} ;

enum plants

grass,

roses,

cabbages,

oaktree
} ;

enum diseases

heart,

skin,

malnutrition,

circulatory

} ;

enum quarks

up,

down,

charmed,

strange,

top,

bottom,

truth,

beauty

23 - ADVANCED DATA TIPES

Other uses could include types of car, colours,

names of roads or train numbers.

void
Void is a peculiar data type which has some

debatable uses. A variable or function can be

declared void in the following ways:

void function{);

void variable;

void *ptr;

(void) returnvalue();

The following points can be made about void:

I) A variable which is declared void is useless - it

cannot be used in an expression and it cannot

be assigned to a value

2) A function which is declared void has no return

value and returns simply with:

return ();

3) A function can be cast (void) in order to

explicitly discard a return value (though this is

done by the compiler anyway). For instance,

scanf() returns the number of items it matches

in the control string, but this is usually

discarded:

scanf (" %c",&ch);

or:

(void) scanf(" %c",&ch);

4) A void pointer can point to to any kind of

object . This means that any pointer can be

assigned to a void pointer, regardless of its type.

This is always possible using the cast operator

anyway.

II

C - A DABHAND GUIDE

•

volatile
This is a type which has been proposed in the ANSI

standard of C. The idea behind this type is to allow

memory-mapped input/output to be held in C

variables. Variables which are declared volatile will

be able to have their values altered in ways which a

program does not explicitly define, that is, by

external influences such as clocks, external ports,

hardware, interrupts and so on . This type will be

useful for optimising compilers which copy the

values of local variables into register storage and use

the copied values for reference. The keyword volatile

will force such compilers to read the variable itself,

each time its value is required.

const
The reserved word const is used to declare data

which can only be assigned once, either because they

are in ROM (for example) or because they are data

whose values must not be corrupted. Types declared

const must be assigned when they are first initialised

and they exist as stored values only at compile time:

const double pi = 3.14;

const int one = 1;

Since a constant array only exists at compile time, it

can be initialised by the compiler.

const int array[] =

1,

2,

3,

4

} ;

23 -ADVANCED DATA 1YPES

Array[O] then has the value one, array[!] has the

value two and so on. Any attempt to assign values to

const types, will result in various compilation errors.

It is worth comparing the const declaration to

enumerated data, as they are connected in a very

simple way. The following two sets of statements are

the same:

enum numbers

and:

zero,

one,

two,

three,

four

} ;

const zero = 0;

const one 1;

const two 2;

const three = 3;

const four = 4;

Constant types and enumerated data are therefore

just different aspects of the same thing. Enumerated

data provide a convenient way of classifying

constants while the compiler keeps track of the

values and types. The programmer personally has to

keep track of constant values.

struct
Structures are called records in Pascal and many

other languages. They are packages of variables

which are all wrapped up under a single name.

Structures are described in detail in Chapter 26 .

•

C - A DAB HAND GillDE

union
Unions are often grouped together with structures,

but they are quite unlike them in almost all respects.

They are like general purpose storage containers,

which can hold a variety of different variable types,

at different times. The compiler makes a container

which is large enough to take any of these. Unions

are described in detail in Chapter 26.

typedef
C allows programmers to define their own data

types or to re-name existing ones by using a

compiler 'directive' called typedef. This statement is

used as follows:

typedef type newtypename;

So, for example, a program could define a type

called 'byte', which was exactly one byte in size by

redefining the word 'char':

typedef char byte;

The compiler type checking facilities then treat byte

as a new type which can be used to declare variables:

byte variable, function();

The typedef statement may be written inside

functions or in the global white space of a program.

/***/
/* Program */

/***/
typedef int newnamel;

main ()

typedef char newname2;

•

23 - ADVANCED DATA TYPES

This program will compile and run, but won't do

anything useful!

It is not very often that a programmer wishes to re­

name existing types. The most important use for

typedef is in conjunction with structures and unions.

Structures and unions can, by their very definition,

be all kinds of shape and size and so their names can

become long and tedious to declare. Typedef makes

dealing with these simple, because it means that the

user can define a structure or union with a simple

typename . See Chapter 26 about structures and

unions.

Questions:
I) Is FILE a reserved word? If so why is it in upper

case?

2) Write a statement which declares a file pointer

called fp.

3) Enumerated data are given values by the

compiler so that it can do arithmetic with them.

True or false?

4) Does 'void' do anything which C cannot already

do without

this type?

5) What type might a timer device be declared if it

were to be called by a variable name?

6) Write a statement which declares a new type

'real' to be like the usual type 'double' .

7) Variables declared 'const' can be of any type.

True or false?

•

C - A DAB HAND GUIDE

•

Low-level
Operations

Bits and Bytes

Flags/Messages

Shifting
This section is advanced. You may wish to omit it on

first reading.

Down in the depths of a computer, below even the

operating system are 'bits' of memory. Bits (or

binary digits) are the lowest level software objects in

a computer - there is nothing more primitive. For

precisely this reason, it is extremely rare for high­

level languages to even acknowledge the existence of

C - A DAB HAND GUIDE

•

bits, let alone manipulate them. Manipulating bit

patterns is usually the preserve of assembly language

programmers. C, however, is quite different from

most other high level-languages in that it allows a

programmer full access to bits and even provides

high-level operators for manipulating them.

As this book is an introductory text, bit operations

will be dealt with superficially. Many of the facilities

which are available for bit operations need not

concern the majority of programs. This chapter

concerns the main uses of bit operations for high­

level progra~ns and it assumes a certain amount of

knowledge about programming at the low-level.

You may wish to consult a book on assembly

language programming to learn about low-level

memory operations, in more detail.

Bit Patterns
All computer data, of any type, are bit patterns. The

only difference between a string and a floating point

variable is the way in which human beings choose to

interpret the patterns of bits in a computer's

memory. For the most part, it is quite unnecessary

to think of computer data as bit patterns. Systems

programmers, on the other hand, frequently find

that they need to handle bits directly in order to

make efficient use of memory when using 'flags'. A

flag is a message which is either one thing or the

other. In system terms, the flag is said to be 'on' or

'off' or alternatively 'set' or 'cleared' . The usual

place to find flags is in a status register of a CPU

(central processing unit) or in a pseudo-register (this

is a status register for an imaginary processor, which

is held in memory). A status register is a group of

bits (a byte perhaps) in which each bit signifies

24 - LOW LEVEL OPERATIONS

something special. In an ordinary byte of data, bits

are grouped together and are interpreted to have a

collective meaning, but in a status register they are

thought of as being independent. Programmers are

interested to know about the contents of bits in

these registers, perhaps to find out what happened

in a program after some special operation is carried

out. Other uses for bit patterns are listed below

here:

I) Messages sent between devices in a complex

operating environment use bits for efficiency

2) Serially transmitted data

3) Handling 'bit planes' in screen memory (raster

ports) .

4) Performing fast arithmetic in simple cases

Programmers who are interested in performing bit

operations often work in hexadecimal because every

hexadecimal digit conveniently handles four bits in

one go (16 is two to the power four). See Chapter

23 for details about hexadecimal constants.

Flags, Registers and
Messages
A register is a place inside a computer processor

chip, where data are worked upon in some way.

A status register is a register which is used to return

information to a programmer about the operations

which took place in other registers. Status registers

contain flags which give yes or no answers to
questions concerning the other registers.

In advanced programming, there may be call for

'pseudo-registers' in addition to 'real' ones . A

pseudo-register is merely a register which is created

II

C - A DABHAND GUIDE

•
C - A DABHAND GUIDE

by the programmer in computer memory (it does

not exist inside a processor).

Messages are just like pseudo status registers - they

are collections of flags which signal special

information between different devices and/or

different programs in a computer system. Messages

do not necessarily have fixed locations, they may be
passed a parameters. Messages are an excellentand

compact way of passing information to low-level

functions in a program.

Flags, registers, pseudo-registers and messages are all

treated as bit patterns. A program which makes use

of them must therefore be able to assign these

objects to C variables for use. A bit pattern would

normally be declared as a character or some kind of

integer type in C, perhaps with the aid of a typedef

statement.

typedef char byte;

typedef int bitpattern;

bitpattern variable;

byte message;

The flags or bits in a register/message have the

values one or zero, depending upon whether they

are 'on' or 'off' ('set' or 'cleared'). A program can

test for this by using combinations of the operators

which C provides.

Bit Operators and
Assignments
C provides the following operators for handling bit

patterns:

bits, let alone manipulate them. Manipulating bit

patterns is usually the preserve of assembly language

programmers. C, however, is quite different from

24 - LOW LEVEL OPERATIONS

Operator

<<

>>

/\

&

&=

/\

>>=

<<=

Description

Bit shift left (a specified number

or bit positions)

Bit shift right (a specified number

of bit positions)

Bitwise Inclusive OR

Bitwise Exclusive OR

Bitwise AND

Bitwise one's complement

AND assign (variable = variable

& value)

Exclusive OR assign (variable =

variable I value)

Inclusive OR assign (variable =

variable "value)

Shift right assign (variable =

variable» value)

Shift left assign (variable

variable «value)

The meaning and the syntax of these operators is

given next.

The Meaning of Bit
Operators
Bitwise operations are not to be confused with

logical operations (&&II (AND, OR) and so on) A

bit pattern is made up of zeros and ones and bitwise

operators operate individually upon each bit in the

operand. Every zero or one undergoes the

operations individually.

•

C - A DABHAND GUIDE

•

Bitwise operators (AND, OR) can be used in place

of logical operators (&& II) but they are less

efficient, because logical operators are designed to

reduce the number of comparisons made in an

expression, to the optimum. As soon as the truth or

fallacy of an expression is known, a logical

comparison operator quits. A bitwise operator

would continue operating to the last before the final

result were known.

Below is a brief summary of the operations which

are performed by the above operators on the bits of

their operands.

Shift Operations
Imagine a bit pattern as being represented by the

following group of boxes. Every box represents a bit

and the numbers inside represent their values. The

values written over the top are the common integer

values which the whole group of bits would have, if

they were interpreted collectively as an integer.

128 64 32 16 8 4 2 1

I 0 I 0 I O I 0 I 0 I 0 I 0 I 1 = 1

Shift operators move whole bit patterns left or right

by shunting them between boxes. The syntax of this

operation is:

value << number of positions

value >> number of positions

So for example, using the boxed value (1) just

mentioned:

1 << 1

would have the value two, because the bit pattern

would have been moved one place the the left:

24 - LOW LEVEL OPERATIONS

128 64 32 16 8 4 2 1

I O O I O I O I O I O I 1 I O = 2

Similarly:

1 << 4

has the value 16 because the original bit pattern is

moved by four places:

128 64 32 16 8 4 2 1

0 I 0 I 0 I 1 I 0 I 0 I 0 I 0 16

and:

6 << 2 == 12:

128 64 32 16 8 4 2 1

I O I O I O O I 0 I 1 I 1 I O 6

Shift left two places:

128 64 32 16 8 4 2 1

I 0 I O I O I 0 I 1 I 1 I 0 I 0 I = 12

Notice that every shift left multiplies by two and that

every shift right would divide by two, integerwise. If

a bit reaches the edge of the group of boxes then it

fulls out and is lost forever. So:

1 >> 1 0

2 >> 1 1

2 >> 2 0

n >> n 0

A common use of shifting is to scan through the bits

of a bit pattern one by one in a loop. This is done by

using 'masks'.

•

C - A DABHAND GUIDE

II

Truth Tables and Masking
The operations AND, OR (inclusive OR) and

XOR/EOR (exclusive OR) perform comparisons or

'masking' operations between two bits. They are

binary, or dyadic, operators. Another operation

called complement is a unary operator. The

operations performed by these bit wise operators are

best summarised by 'truth tables'. Truth tables

indicate what the results of all possible operations

are between two single bits. The same operation is

then carried out for all the bits in the variables which

are operated upon .

Complement(-)
This operator works on a single value

The complement of a number is the 'logical

opposite' of the number. C provides a 'one's

complement' operator which simply changes all ones

into zeros and vice versa.

-1 has the value 0 (for each bit)

-0 has the value 1

As a 'truth table' this would be summarised as

follows :

-value

0

1

AND(&):

result

1

0

This works between two values, eg, one and zero:

24 - LOW LEVEL OPERATIONS

value 1 & value 2 == result

0

0

1

1

0

1

0

1

0

0

0

1

Both value one AND value two have to be one in

order for the result to be one.

OR (I):
This works between two values, eg, one I zero:

value 1

0

0

1

1

value 2

0

1

0

1

result

0

1

1

1

The result is one if one OR the other OR both of

the values is one.

XOR/EOR (A):
Operates on two values, eg, one 11 zero:

value 1

0

0

1

1

" value 2 ==

0

1

0

1

result

0

1

1

0

The result is one if one OR the other (but not both)

of the values is one.

•

C - A DAB HAND GUIDE

•

An extremely common use for logic operators is to

make masks. A mask is thought of as a thing which

fits over a bit pattern and modifies the result, usually

to cover up part of a bit pattern . This is particularly

pertinent for handling flags, where a programmer

wishes to know if one particular flag is set or not set

and does not care about the values of the others.

This is done by deliberately inventing a value which

only allows the particular flag of interest to have a

non-zero value, and then ANDing that value with

the flag register. For example, in symbolic language:

MASK = 00000001

VALUEl = 10011011

VALUE2 = 10011100

MASK & VALUEl == 00000001

MASK & VALUE2 == 00000000

The zeros in the mask 'mask ofP the first seven bits

and leave only the last one to reveal its true value.

Alternatively, masks can be built up by specifying

several flags :

FLAGl = 00000001

FLAG2 = 00000010

FLAG3 = 00000100

MESSAGE = FLAGl I FLAG2 I FLAG3

MESSAGE== 00000111

It should be emphasised that these expressions are
only written in symbolic language. It is not possible

to use binary values in C. The programmer must

convert to hexadecimal, octal or denary first (see the

appendices for conversion tables).

A simple example helps to show how logical masks

and shift operations can be combined. The first

program gets a denary number from the user and

converts it into binary .

24 - LOW LEVEL OPERATIONS

The second program gets a value from the user in

binary and converts it into hexadecimal.

Listing 24.1. Bit manipulation #1.

/***/

/*

/* Bit Manipulation #1

/*

*/

*/

*/

/***/

/* Convert denary numbers into binary */

/* Keep shifting i by one to the left */

/* and test the highest bit. This does*/

/* NOT preserve the value of i */

#include <stdio.h>

#define numberofbits 8

/***/

main ()

short i, j,bit,;

short MASK = Ox80;

printf ("Enter any number less than 128: ");

scanf ("%h", &i);

if (i > 128)

{

printf ("Too big\n");

return (0);

printf ("Binary value ");

for (j O; j < nurnberofbits; j++)

{

•

C - A DABHAND GUIDE

bit = i & MASK;

printf ("%ld",bit/MASK);

i <<= l;

printf ("\n");

/* end */

Example Output
Enter any number less than 128: 56

Binary value = 00111000

Enter any value less than 128: 3

Binary value = 00000011

Listing 24.2. Bit manipulation #2.

/***/

I*
/* Bit Manipulation #2

/*

*/

*/

*/

/***/

/* Convert binary numbers into hex */

#include <stdio.h>

#define numberofbits 8

/***/

•

main ()

short j,hex = 0;

short MASK;

char binary[numberofbits];

printf ("Enter an 8-bit binary number: ");

24 - LOW LEVEL OPERATIONS

for (j

for (j

0; j < numberofbits; j++)

binary [j]

}

getchar();

0; j < numberofbits; j++)

{

hex <<= 1;

switch (binary[j])

case '1' MASK = 1;

break;

case '0' MASK = 0;

break;

def a ult printf("Not

return(O);

hex I= MASK;

printf ("Hex value %1x\n", hex);

/* end */

Example Output
Enter any number less than 128: 56

Binary value = 00111000

Enter any value less than 128: 3

Binary value = 00000011

binary\n");

•

C - A DABHAND GUIDE

Questions:
1) What distinguishes a bit pattern from an

ordinary variable? Can any variable be a bit

pattern?

2) What is the difference between an inclusive OR

operation and an exclusive OR operation?

3) If you saw the following function call in a

program, could you guess what its parameter

was?

OpenWindow {BORDER

MOUSECONTROL I SIZING);

GADGETS

4) Find out what the denary (decimal) values of

the following operations are:

a) 7 & 2

b) 1 & 1

c) 15 & 3

d) 15 & 7

e) 15 & 7 & 3

Try to explain the results. (Hint: draw out the

numbers as binary patterns, using the program

listed .)

5) Find out what the denary (decimal) values of

the following operations are:

a) 1 I 2

b) 1 I 2 I 3

6) Find out the values of:

a)l&(-1)

b) 23 & (-23)

c) 2012 & (-2012)

(Hint: write a short program to work them out.

Use 'short' type variables for all the numbers.)

II

Files and
Devices

Advanced Input/Output

Writing to a Printer
Files are places for reading data from or writing data

to. This includes disc files and it includes 'pseudo

devices' such as the printer or the monitor of a

computer. All information which enters or leaves a C

program has to do so by means of a file. Most

commonly, these files are stdin and stdout (see

Chapter 15) but more sophisticated programs need

to be able to read or write to files which are found

on a disc or to the printer and so on.

An operating system allows a program to see files in

'the outside world' by providing a number of -----

C - A DABHAND GUIDE

•

'portals' ('inlets and outlets') to work through. In

order to examine the contents of a file or to write

information to a file, a program has to 'open' one of

these portals. The reason for this slightly indirect

method of working is that these 'portals' hide the

irrelevant details of filing from the programmer. A

program which writes information does no more

than pass that information to one of these portals

and the operating system's file-manager does the

rest. A program which reads data, simply reads

values from its file 'portal' and does not have to

worry about how they got there. This is extremely

simple to work in practice.

In order to use a file, a program has to go through

the three steps of the following routine:

I) Open a file for reading or writing. (Reserve a

portal and locate the file on disc or whatever.)

2) Read or write to the file using file handling

functions provided by the standard library.

3) Close the file to free the operating system

'portal' for use by another program or file .

25 - FILES AND DEVICES

FILE
PORTALS

Figure 25.1. Files to Rnd from R progrRm.

A program opens a file by calling a standard library

function and is returned a file pointer, by the

operating system, which allows·a program to address

that particular file and to distinguish it from all the

others.

Files Generally
C provides two levels of file handling, high-level and

low-level. High-level files are all treated as text files .

In fact, the data which go into the files are exactly

what would be seen on the screen, character by

character, except that they are stored in a file

instead. This is true whether a file is meant to store

characters, integers, floating point types or whatever.

Any file, which is written to by high-level file

II

C - A DABHAND GUIDE

•

handling functions, ends up as a text file which

could be edited by a text editor.

High-level text files are also read back as character

files, in the same way that input is acquired from the

keyboard. All this means that high-level file

functions are identical in concept to

keyboard/screen input/output.The alternative to

these high-level functions, is obviously low-level

functions. These are more efficient, in principle, at

filing data, as they can store data in large lumps in

raw memory format, without converting to text first.

Low-level input/output functions have the

disadvantage that they are less 'programmer friendly'

than the high-level ones, but they are likely to work

faster.

File Positions
When data are read from a file, the operating system

keeps track of the current position of a program

within that file so that it only needs to make a

standard library call to 'read the next part of the

file' . Theoperating system then obliges by reading

some more and advancing its position within the

file, until it reaches the end. Each single character

which is read causes the position in a file to be

advanced by one.

Although the operating system does a great deal of

hand holding as regards file positions, a program can

control the way in which that position changes using

functions such as ungetc if need be. In most cases it

is not necessary and it should be avoided, since

complex movements within a file can cause complex

movements of the disc drive mechanism, which in

turn can lead to wear and tear of discs and the

occurrence of errors in microcomputers .

25 - FILES AND DEVICES

High-level File Handling
Functions
Most of the high-level input/output functions

which deal with files are easily recognisable in that

they start with the letter 'f'. Some of these functions

will appear strikingly familiar. For instance:

fprintf()

fscanf()

fgets()

fputs()

These are all 'file versions' of the standard

input/output library. They work with generalised

files, as opposed to the specific files, stdio and

stdout, which printf and scanf use. The file versions

differ only in that they need an extra piece of

information - the file pointer to a particular portal.

This is passed as an extra parameter to the functions.

They process data in an identical way to their

standard input/output counterparts.

Other filing functions will not look so familiar. For

example:

fopen()

fclose()

getc()

ungetc();

putc()

fgetc()

fputc()

feof()

Before any work can be done with high-level files,

these functions need to be explained in some detail.

•

C" A DABHAND GIBDE

•

Opening Files
A file is opened by a call to the library function,

fopen(). This is available automatically when the

library file 'stdio.h' is included. There are two stages

to opening a file. First, a file 'portal' must be found

so that a program can access information from a file

at all. Second, the file must be physically located on

a disc or as a device or whatever. The fopen()

function performs both of these services and if the

file it attempts to open does not exist, that file is

created anew. The syntax of the fopen() function is:

or:

FILE *returnpointer;

returnpointer = fopen ("filenarre", "rrode") ;

FILE returnpointer;

char *fname, *mode;

returnpointer = fopen(fname,mode);

The filename is a string which provides the name of

the file to be opened . Filenames are system

dependent, so the details should be found in your

operating system manual. The operation mode is

also a string, chosen from one of the following:

"r" Open file for reading

"w" Open file for writing

"a" Open file for appending

"rw" Open file fur reading and writing (some ~ms)

This mode string specifies the way in which the file

will be used. Finally, returnpointer is a pointer to a

FILE structure - which is the whole object of calling

this function. If the file (which was named) opens

successfully when fopen() is called, returnpointer is a

pointer to the file portal. If the file could not be

opened, this pointer is set to the value NULL. This

should be tested for, because it doesn't make sense

25 - FILES AND DEVICES

to attempt to write to a file which could not be

opened or created, for whatever reason.

A 'read only' file might be opened, for example,

with some program code such as:

FILE *fp;

if ((fp fopen ("filename", "r")) NULL)

printf ("File could not be opened\n");

error_handler();

A question which springs to mind is: what happens if

the user has to type in the name of a file while the

program is running? The solution to this problem is

quite simple. Recall the function filename() which

we came accross in Chapter 21 :

/***/

char *filename() /* return filename */

static char *filenm = " ";

do

printf ("Enter filename :");

scanf (" %24s", filenm);

skipgarb();

while (strlen(filenm) 0);

return (filenm);

/***/

II

C - A DABHAND GillDE

•

This function makes file opening simple. The

programmer would now write something like:

FILE *fp;

char *filename();

if ((fp = fopen (filename(), "r")) == NULL)

printf ("File could not be opened\n");

error_handler ();

and the user would automatically be prompted for a

filename.

When a file has been opened, it can be read from or

written to using the other library functions, such as

fprintf and fscanf, and finally the file has to be closed

again.

Closing a File
A file is closed by calling the function fclose. The

syntax for fclose is as follows:

int returncode;

FILE *fp;

returncode = fclose (fp);

fp is a pointer to the file which is to be closed and

returncode is an integer value which is zero if the file

was closed successfully. fclose prompts the file

manager to finish off its dealings with the named file

and to close the portal which the operating system

reserved for it.

When closing a file, a program needs to do

something like the following:

if (fclose(fp) != 0)

25 - FILES AND DEVICES

printf ("File did not exist.\n");

error_handler();

fprintf
This is the highest level function which writes to

files . Its name is meant to signify 'file-print­

formatted' and it is almost identical to its stdout

counterpart, printf. The form of the fprintf

statement is as follows:

fprintf (fp,"string",variables);

where fp is a file pointer, string is a control string

(which is to be formatted), and the variables are

those which are to be substituted into the blank

fields of the format string. For example, assume that

there is an open file, pointed to by fp:

int i 12;

float x = 2.356;

char ch = 's';

fprintf (fp, "%d %f %c", i, x, ch);

The conversion specifiers are identical to those for

printf. In fact fprintf is related to printf in a very

simple way: the following two statements are

identical:

printf ("Hello world %d", 1);

fprintf (stdout,"Hello world %d", 1);

fscanf
The analogue of scanf is fscanf and, as with fprintf,

this function differs from its standard I/O

counterpart only in one extra parameter - a file

pointer. The form of an fscanf statement is:

FILE *fp;

int n;

n = fscanf (fp,"string",pointers);

II

C - A DABHAND GtnDE

•

where n is the number of items matched in the

control string and fp is a pointer to the file which is

to be read from. For example, assuming that £P is a

pointer to an open 'read' file:

int i 10;

float x = -2.356;

char ch = 'x' ;

fscanf (fp, "%d %f %c", &i, &x, &ch);

The remarks which were made about scanf also

apply to this function - fscanf is a 'dangerous'

function in that it can easily get out of step with the

input data, unless the input is properly formatted.

skipfilegarb ?
Do programs need a function such as skipgarb to

deal with instances of badly formatted input data?

A program can assume a bit more about files which

are read into a program from disc file than it can

assume about the user's typed input. A disc file will

presumably have been produced by the same

program which generated it, or will be in a format

which the program expects. Is a function like

skipgarb necessary then? The answer is, probably

not. This does not mean to say that a program does

not need to check for 'bad files', or files which do

not contain the data they are alleged to contain. On

the other hand, a programmer is at liberty to

assume that any file which does not contain correctly

formatted data is just nonsense - he or she does not

have to try to make sense of it with a function like

skipgarb, the program could simply return an error

message like 'BAD FILE' or whatever, and recover

in a sensible way. It would probably not make sense

to use a function like skipgarb for files .

25 - FILES AND DEVICES

For comparison alone, skipfilegarb is written as

follows:

skipfilegarb(fp)

FILE *fp;

while (getc (fp) != '\n')

Single Character 1/0
There are commonly four functions/macros which

perform single character input/output to or from

files. They are analogous to the functions/macros:

getchar and putchar

for the standard I/O files, and they are called:

getc

ungetc

putc

fgetc

fputc

getc/fgetc
The difference between getc and fgetc will depend

upon a particular system. It might be that getc is

implemented as a macro, whereas fgetc is

implemented as a function or vice versa. One of

these alternatives may not be present at all in a

library. Check the manual, to be sure! Both getc and

fgetc fetch a single character from a file:

•

C - A DABHAND GUIDE

FILE *fp;

char ch;

/* open file */

ch getc (fp);

ch fgetc (fp);

These functions return a character from the specified

file if they operated successfully, otherwise they

return EOF to indicate the end of a file or some

other error. Apart from this, these functions/macros

are quite unremarkable.

ungetc
ungetc is a function which 'un-gets' a character from

a file. That is, it reverses the effect of the last 'get'

operation. This is not like writing to a file, but it is

like stepping back one position within the file. The

purpose of this function is to leave the input in the

correct place for other functions in a program when

other functions go too far in a file. An example of

this would be a program which looks for a word in a

text file and processes that word in some way.

while (getc (fp) ! = ' ')

The program would skip over spaces until it found a

character and then it would know that this was the

start of a word. However, having used getc to read

the first character of that word, the position in the

file would be the second character in the word! This

means that if another function wanted to read that

word from the beginning, the position in the file

would not be correct, because the first character

would already have been read. The solution is to use

-----ungetc to move the file position back a character:

•

25 - FILES AND DEVICES

int returncode;

returncode = ungetc(fp);

The returncode is EOF if the operation was

unsuccessful.

putc/fputc
These two functions write a single character to the

output file, pointed to by fp. As with getc, one of

these may be a macro. The form of these statements

is:

FILE *fp;

char ch;

int returncode;

returncode

returncode

fputc (ch,fp);

putc (ch, fp) ;

The returncode is the ASCII code of the character

sent, if the operation was successful, otherwise it is

EOF.

fgets and fputs
Just as gets and puts fetched and sent strings to

standard input/output files stdin and stdout, so

fgets and fputs send strings to generalised files.

The form of an fgets statement is as follows:

char *strbuff,*returnval;

int n;

FILE *fp;

returnval = fgets (strbuff,n,fp);

strbuff is a pointer to an input buffer for the string

and fp is a pointer to an open file . Returnval is a

pointer to a string: if there was an error in fgets this

pointer is set to the value NULL, otherwise it is set

II

C - A DABHAND GUIDE

•

to the value of 'strbuff'. No more than n-1

characters are read by fgets so the programmer has

to be sure to set n equal to the size of the string

buffer (one byte is reserved for the NULL

terminator) .

The form of an fputs statement is as follows:

char *str;

int returnval;

FILE *fp;

returnval = fputs (str,fp);

Where str is the NULL terminated string which is to

be sent to the file pointed to by fp. Returnval is set

to EOF if there was an error.

feof
This function returns a true or false result. It tests

whether or not the end of a file has been reached

and if it has, it returns 'true' (which has any value

except zero); otherwise the function returns 'false'

(which has the value zero). The form ofa statement

using this function is:

FILE *fp;

int outcome;

outcome= feof(fp);

Most often feof will be used inside loops or

conditional statements. For example, consider a loop

which reads characters from an open file, pointed to

by fp. A call to feof is required in order to check for

the end of the file .

while (!feof(fp))

25 - FILES AND DEVICES

ch getc (fp);

Roughly translated this code reads: 'while NOT end

of file, ch equals get character from file'. To explain

fully, the loop continues to fetch characters as long

as the end of the file has not been reached. Notice

the logical NOT operator (!) which stands before

feof.

Switching Output Files:
Printer Output
Any serious application program has to be in full

control of the output of a program. For instance, it

may need to redirect output to the printer so that

data can be made into hard copies. To do this, one

of three things must be undertaken:

l) stdout must be redirected so that it sends data

to the printer device

2) A new 'standard file' must be used (not all C

compilers use this method)

3) A new file must be opened in order to write to

the printer device

The first method is not generally satisfactory for

applications programs, because the standard files

stdin and stdout can only easily be redirected from

the operating system command line interpreter

(when a program is run by typing its name).

Examples of this are:

type file > PRN

or alternatively:

type > PRT: file

which send a text file to the printer device . The

second method is reserved for only a few C

•

C - A DABHAND GUIDE

•

implementations, in which another 'standard file' is

opened by the local operating system and is available

for sending data to the printer stream. This file

might be called 'stdprn' or 'standard printer file' and

data could be written to the printer by switching

writing to the file like this:

fprintf (stdprn, "string %d ... ", integer);

The final method of writing to the printer is to open

a file to the printer. To do this, a program has to

give the 'filename' of the printer device. This could

be something like 'PRT:' or 'PRN' or 'LPRT' or

whatever. The filename (referred to as a pseudo­

device name), is used to open a file in precisely the

same way as any other file is opened, ie, by using a

call to fopen() . fopen() then returns a pointer to file

(which is effectively 'stdprn ') and this is used to

write data to a computer's printer driver. The

program code to do this should look something like

the following:

FILE *stdprn;

if ((stdprn = fopen("PRT:","w")) ==NULL)

printf ("Printer busy or disconnected\n");

error_handler;

Listing 25 .1 is an example program which reads a

source file (for a program, written in C, Pascal or

whatever), and lists it, along with its line numbers.

This kind of program is invaluable for debugging.

The program provides the user with the option of

sending the output to the printer. The printer device

is assumed to have the filename 'PRT:'. Details of

how to convert the program for other systems is

given at the end .

25 - FILES AND DEVICES

Listing 25.1. Program file utility.

/***/

/*

/* LIST : program file utility

/*

*/
*/

*/
/***/

/* List a source file with line numbers attached. Like */

/* TYPE only with lines numbers too. */

#include <stdio.h>

#define code 0

#define size 255

#define on 1

#define off 0

#define true 1

#define false

FILE *fin;

FILE *f out = stdout; /* where output goes to */

/***/

/* Level 0 */
/***/

main ()

char strbuff[size],*filename();

int Pon = false;

int line = l;

printf ("Source Program Lister Vl.0\n\n");

if ((fin = fopen (filename(), "r")) == NULL)

printf ("\nFile not found\n");

exit (code);

II

C - A DABHAND GUIDE

printf ("Output to printer? Y/N");

if (yes())

{

Pon= Printer(on);

while (!feof(fin))

if (fgets (strbuff, size, fin) ! = strbuff)

if (! feof (fin))

printf ("Source file corrupted\n");

exit (code) ;

fprintf (fout,"%4d %s",line++,strbuff);

CloseFiles(Pon);

/***/
/* Level 1 */

/***/

CloseFiles(Pon) /* close & tidy */

int Pon;

if (Pon)

Printer(off);

if (fclose(fin) != 0)

printf ("Error closing input file\n");

•

25 - FILES AND DEVICES

/***/

Printer (status /* switch printer file */

int status;

switch (status)

case on: while ((fout fopen("PRT:","w")) =NULL)

printf ("Printer busy or disconnected\n");
printf ("\n\nRetry? Y/N\n");

if (!yes())

break;

{

exit(code);

case off: while (fclose(fout) != 0)

printf ("Writirq to close printer stream\r") ;
}

/***//*
Toolkit */
/***/

char *filename() /* return filename */

static char *filenm = " ";

II

C - A DABHAND GUIDE

do

printf ("Enter filename :");

scanf ("%24s",filenm);

skipgarb () ;

}

while (strlen(filenm) 0);

return (filenm);

/***/

yes () /* Get a yes/no response from the user */

char ch;

while (true)

ch = getchar();

skipgarb();

switch (ch)

case 'y'

case 'n'

case 'Y'

case 'N'

return (true);

return (false);

/***/
skipgarb ()
{

/* skip garbage corrupting input */

while (getchar() != '\n')

/* end */

•

25 - FILES AND DEVICES

Program Output
Here is a sample portion of the output of this

program as applied to oneof the example programs

in chapter 30.

1 /**************************************/

2 /* */

3 I* C pro;µ:atmi.ng utility : variable ref.~/

4 /* */

5 /**************************************/

6

7

8

9

10

11

12

13

14

15

16

/* See section 30 *I

iinclude "stdio.h"

tinclude "ctype.h"

idef ine true 1

tdefine false 0

tdef ine dummy 0

tdefine ma.xstr 512

tdef ine ma.xIDsize 32

Converting the Example
The example program could be altered to work with

a standard printer file 'stdprn' by changing the

following function:

Printer (status)

int status;

/* switch printer file */

switch (status)

case on: fout = stdprn;

break;

case off: fout = stdout;

II

C - A DABHAND GlTIDE

•

Filing Errors
The standard library provides an error

function/macro which returns a true/false result

·according to whether or not the last filing function

call returned an error condition. This is called

ferror() . To check for an error in an open file,

pointed to by fp:

FILE *fp;

if (ferror (fp))

error_handler();

This function/macro doesn't shed any light upon

the cause of errors, only whether errors have

occurred at all. A detailed diagnosis of what went

wrong generally is only possible by means of a

deeper level call to the disc operating system (DOS) .

Other Facilities for High­

level Files
Files which have been opened by fopen can also be

handled with the following additional functions:

fread

fwrite

ftell

fseek

rewind

ffiush

These functions provide facilities to read and write

whole blocks of characters in one operation, as well

as further facilities to locate and alter the current

focus of attention within a file . They offer,

25 - FILES AND DEVICES

essentially, low-level filing operations for files which

have been opened for high- level use!

tread and fwrite
These functions read and write whole blocks of

characters at a time. The form of fread is as follows:

FILE *fp;

int noread,n,size;

char *ptr;

noread = fread (ptr,size,n,fp);

The parameters in brackets provide information

about where the data will be stored when read from

a file . fp is a pointer to an open file; ptr is a pointer

to the start of a block of memory which is to store

the data when it is read; size is the size of a 'block'

of data in characters; n is the number of blocks of
data to be read. Finally, 'noread' is a return value

which indicates the number of blocks which were

actually read during the operation. It is important to

check that the number of blocks expected is the

same as the number received, in case something

went wrong with the reading process. For example,

the disc might be corrupted, or the file might have

been altered in some way.

fWrite has an identical call structure to fread:

FILE *fp;

int nowritten,n,size;

char *ptr;

nowritten = fread (ptr,size,n,fp);

This time the parameters in brackets provide

information about where to find the data which are

to be written to a file. fp is a pointer to an open file;

ptr is a pointer to the start of a block of memory at

which the data are stored. Size is the size of a data

•

C - A DABHAND GUIDE

•

'block' in characters and n is the number of blocks

of data to be read. Finally, 'nowritten' is a return

value which indicates the actual number of blocks

which was written. Again, this should be checked.

A caution about these functions - each of these

'block transfer' routines makes an important

assumption about the way in which data are stored

in the computer system. It is assumed that the data

are stored 'contiguously' in the memory, that is, side

by side, in sequential memory locations. In some

systems this can be difficult to arrange (in multi­

tasking systems in particular) and almost impossible

to guarantee . Memory which is allocated in C

programs by the function 'malloc()' does not

guarantee to find contiguous portions of memory on

successive calls. This should be noted carefully when

developing programs which use these calls.

File Positions: ftell and fseek
ftell tells a program its position within a file, opened

by fopen. fseek seeks a specified place within a file,

opened by fopen .

Normally high-level read/write functions perform as

much management over positions inside files as the

programmer wants, but if they are insufficient, ftell

and fseek can be used. The form of them function

calls is:

long int pos;

FILE *fp;

pos = ftell(fp);

fp is an open file, which is in some state of being

read or written to . The long integer value, pos,

describes the position in terms of character number

from the beginning of the file .

25 - FILES AND DEVICES

Aligning a file 'portal' with a particular place in a file

is more sophisticated than simply taking note of the

current position . The call to fseek looks like this:

long int pos;

int mode,returncode;

FILE *fp;

returncode = fseek (fp,pos,mode);

The parameters have the following meanings. fP is a

pointer to a file opened by fopen . Posis some way of

describing the position required within a file . Mode

is an integer which specifies the way in which pos is

to be interpreted . Finally, returncode is an integer

whose value is zero if the operation was successful,

and minus one if there was an error.

Mode values are as follows :

Mode

0

Action

Pos is an offset measured relative to the

beginning of the file

1 Pos is an offset measured relative to the

current position

2 Pos is an offset measured relative to the

end of the file

Some examples help to show how this works in

practice:

long int pos = 50;

int mode= O,returncode;

FILE *fp;

if (fseek (fp,pos,mode) != 0) /* find SOth character */

printf("Error!\n");

•

C - A DABHAND GUIDE

fseek(fp,OL,0);

fseek(fp,2L,0);

/* find beginning of file */

/* find the end of a file */

if (fseek (fp,lOL,1) != 0) /*move 10 char's forward*/

printf("Error!\n");

• ----

The 'L's indicate 'long' constants.

rewind
rewind is a macro, based upon fseek, which resets a

file position to the beginning of the file. For

example:

FILE *fp;

rewind (fp);

fseek (fp, OL, 0); /* rewind() */

fflush
This is a macro/function which can be used on files

which have been opened for writing or appending.

It 'flushes' the output buffer by forcing the

characters in the output buffer to be written to the

file. If used on files which are open for reading, it

causes the input buffer to empty (assuming that this

is allowed at all). For example:

FILE *fp;

fflush (fp);

Low-level Filing Operations
Normally a programmer can get away with using the

high-level input/output functions, but there may be
times when C's predilection for handling all high­

level input/output as text files becomes a nuisance .

25 - FILES AND DEVICES

A program can then use a set of low-level 1/0

functions which are provided by the standard library.

These are:

open

close

creat

read

write

rename

unlink/ remove

!seek

These low-level routines work on the operating

system's end of the file 'portals'. They should be

regarded as advanced features because they are

dangerous routines for bug-ridden programs. The

data which they deal with are untranslated, that is,

no conversion from characters to floating point,

integers or any type at all takes place. Data are

treated as a raw stream of bytes. Low-level functions

should not be used on any file at the same time as

high-level routines, as high-level file handling

functions often make calls to the low-level functions.

Working at the low-level, programs can create,

delete and rename files but they are restricted to the

reading and writing of untranslated data - there are

no functions such as fprintf{) or fscanf{) which make

type conversions. As well as the functions

mentioned, a local operating system will doubtless

provide special function calls which enable a

programmer to make the most of the facilities

offered by the particular operating environment.

These will be documented in your compiler manual

or operating system manual, depending on the

---~.

C - A DABHAND GIBDE

•

system concerned. (They might concern special

graphics facilities or windowing systems or provide

ways of writing special system dependent data to

disc files, such as date/time stamps and so on .)

File Handles
At the low-level, files are not handled using file

pointers but with integers known as file handles or

file descriptors. A file handle is essentially the

number of a particular 'file portal' in an array. In

other words, for all the different terminology, they

describe the same thing. For example:

int fileportal;

would declare a file 'handle,' or 'descriptor', or

'portal', or whatever it is to be called.

open()
Open() is the low-level file open function. The form

of this function call is as follows:

int fileportal, mode;

char *filename;

fileportal =open (filename,mode);

where filename is a string which holds the name of

the file concerned, mode is a value which specifies

what the file is to be opened for and fileportal is

either a number used to distinguish the file from

others, or minus one if an error occurred.

A program can give more information to this

function than it can to fopen in order to define

exactly what open will do. The integer 'mode' is a

message, or a pseudo register, which passes the

necessary information to open, by using the

following flags (See Chapter 24 for information on

flags):

25 - FILES AND DEVICES

O_RDONLY Read access only

O_WRONLY Write access only

O_RDWR Read/write access and on

some compilers:

O_CREAT Create the file if it does not

exist

O_TRUNC Truncate the file if it does exist

O_APPEND Find the end of the file before

each write

O_EXCL Exclude. Force create to fail if

the file exists.

The macro definitions of these flags will be included

in a header file - find out which one and #include it

in the program. On most compilers it should be

called fcntl.h.

The normal procedure is to open a file using one of

the first three modes. For example:

#define failed -1

main()

char *filename();

int fileportal;

fileportal = open(filename(), O_RDONLY);

if (fileportal == failed)

printf ("File not found\n");

error handler (failed);

•

C - A DABHAND GUIDE

•

This program will open up a 'read only' file for low­

level handling, with error checking.

Some systems allow a more flexible way of opening

files. The four appended modes are values which can

be bit-wise ORed with one of the first three, in

order to get more mileage out of open. The bit-wise

OR operator is the split vertical bar 'I'. For example,

to emulate the fopen function, a program could opt

to create a file if it did not already exist:
fileportal = open (filename(), 0 RDONLY O_CREAT);

open sets the file position to zero, if the file is

opened successfully.

close
close releases a file portal for use by other files and

brings a file completely up to date with regard to

any changes that have been made to it. Like all other

filing functions, it returns the value zero if it

performs successfully, and the value minus one if it

fails. For example:

#define failed -1

if (close(fileportal) == failed)

ere at

printf ("ERROR!");

}

This function creates a new file and prepares it for

access using the low-level file handling functions. If

a file which already exists is created, its contents are

discarded. The form of this function call is:

int fileportal, pmode;

char *filename;

fileportal = creat (filename,pmode);

25 - FILES AND DEVICES

Filename must be a valid filename, pmode is a flag

which contains access-privilege mode bits (system

specific information about allowed access) and

fileportal is a returned file handle . In the absence of

any information about pmode, this parameter can be

set to zero.

read
This function gets a block of information from a file.

The data are loaded directly into memory as a

sequence of bytes. The user must provide a place for

them, either by making an array, or by using malloc

to reserve space. Read keeps track of file positions

automatically, so it actually reads the next block of

bytes from the current file position. The following

example reads 'n' bytes from a file:

int returnvalue, fileportal, n;

char *buffer;

if ((buffer= malloc(size)) ==NULL)

puts ("Out of memory\n");

error handler ();

returnvalue =read (fileportal,buffer,n);

The return value should be checked. Its values are

defined as follows:

returnvalue

0

-1

Description

End of file

Error occurred

The number of bytes actually

read. If all went well this should

be equal ton

•

C - A DABHAND GIBDE

•

write
This function is the opposite of read. It writes a

block of n bytes from a contiguous portion of

memory to a file which was opened by open . The

form of this function is:

int returnvalue, fileportal, n;

char *buffer;

returnvalue =write (fileportal,J:::uffer,n);

The return value should, again, be checked for

errors:

Returnvaluc Description

-1 error

number of bytes written

fseek
Low-level file handing functions have their

equivalent of fseek for finding a specific position

within a file. This is almost identical to fseek except

that it uses the file handle rather than a file pointer

as a parameter and has a different return value . The

constants should be declared long int, or simply

'long' :

#define failed -lL

long int pos,offset,fileportal;

int mode,returncode;

if ((pos = fseek (fileportal,offset,mode))

printf("Error!\n");

failed)

25 - FILES AND DEVICES

pos gives the new file position if successful and -1

(long) if an attempt was made to read past the end

of the file.

The values which mode can take are:

Mode Action

0

1

2

Offset measured relative to the

beginning of the file.

Offset measured relative to the

current position.

Offset measured relative to the end of

the file.

unlink/remove
These functions delete a file from disc storage.

When deleted, files are usually irretrievable. They

return minus one if the action failed:

#define failed -1

int returnvalue;

char *filename;

if (unlink (filename) == failed)

printf ("Can't delete %s\n",filename);

if (remove (filename) == failed)

printf ("Can't delete %s\n",filename);

filename is a string containing the filename

concerned. This function can fail if a file concerned

is protected, if it isn't found or if it is a device . It is

impossible to delete the printer!

•

C - A DABHAND GUIDE

rename
This function renames a file. The programmer

specifies two filenames - the old filename and a new

filename. As usual, it returns the value minus one if

the action fails . An example illustrates the form of

the rename call:
#define failed -1

char *old,*new;

if (rename(old,new) failed)

printf ("Can't rename %s as %s\n",old,new);

rename can fail because a file is protected or it may

be in use, or because one of the filenames given was
not valid.

The example program in listing 25 .2 strings

together some low-level filing actions so as to

illustrate their use in a real program. The idea is to

present a kind of file or 'project' menu for creating,

deleting and renaming files. A rather feeble text­

editor allows the user to enter 255 characters of text

which can be saved.

Listing 25.2. Low-level file handling.

/***/

/*

/* LOW-LEVEL FILE HANDLING

/*

*/

*/

*/

/***/

#include <stdio.h>

#include <ctype.h>

#include <fcntl.h>

#define code 0

#define size 255

#define fnmsize 30

•

/*defines 0 RDONLY etc .. */

/* Max size of filenames */

25 - FILES AND DEVICES

#define true 1

#define false 0

#define failed -1

#define clrscrn() putchar('\f')

#define newline() putchar('\n')

int fileportal;

/***/

/* Level 0 */

/***/

main ()

char *data,getkey(),*malloc();

if ((data malloc(size)) NULL)

puts ("Out of memory\n");

return (code);

while (true)

menu();

switch (getkey())

{

case 'l'

case 's'

case 'e'

case 'd'

LoadFile(data);

break;

SaveFile(data);

break;

Edit(data);

break;

DeleteFile ();

II

C - A DABHAND GUIDE

case 'r'

case 'q'

break;

RenameFile();

break;

if (sure())

return (code);

break;

/***/
/* Level 1 */

/***/

menu ()

clrscrn();

printf ("

printf ("

printf ("

printf ("

printf ("

printf ("

printf ("

printf ("

printf ("

printf ("

printf ("

printf ("

printf ("

printf ("

newline();

II

~~~~~~~~~~~~~~~~~~~-\n"); 

MENU 

L) Load File 

S) Save File 

E) Edit File 

D) Delete File 

R) Rename File 

Q) Quit 

Select Option and RETURN 

\n"); 

\n"); 

\n") ; 

\n"); 

\n") ; 

\n"); 

\n"); 

\n"); 

\n"); 

\n"); 

\n") ; 

\n"); 

\n") ; 



25 - FILES AND DEVICES 

/*************************************************/ 

LoadFile (data) /* Low level load */ 

char *data; 

char *filename(),getkey(); 

int error; 

fileportal = open(filename(), O_RDONLY); 

if (fileportal == failed) 

printf ("File not found\n"); 

return (failed); 

error read (fileportal,data,size); 

if (error failed) 

printf ("Error loading file\n"); 

wait(); 

else 

if (error != size) 

printf ("File was corrupted\n"); 

wait() ; 

close (fileportal,data,size); 

return (error); 

• 



C - A DAB HAND GUIDE 

/*************************************************/ 

SaveFile(data) /* Low Level save */ 

char *data; 

char *filename(),getkey(),*fname; 

int error,fileportal; 

fileportal = open ( (fnarre = filename()), O_WRONLY); 

if (fileportal == failed) 

printf ("File cannot be written to\n"); 

printf ("Try to create new file? Y/N\n"); 

if (yes()) 

{ 

if ( (fileportal = C.reateFile(fnarre)) failed) 

printf ("Cannot create file %s\n",fnarre); 

return (failed); 

else 

return (failed); 

error= write (fileportal,data,size); 

if (error < size) 



25 - FILES AND DEVICES 

printf ("Error writing to file\n"); 

if (error != failed) 

printf ("File only partially written\n"); 

close (fileportal,data,size); 

wait() ; 

return (error); 

/*************************************************/ 

Edit(data) /* primitive text editor */ 

char *data; 

char *ptr; 

int ctr = 0; 

printf ("Contents of file:\n\n"); 

for (ptr =data; ptr < (data+ size); ptr++) 

{ 

if (isprint(*ptr)) 

putchar(*ptr); 

if ((ctr++ % 60) 0) 

newline(); 

• 



C - A DABHAND GUIDE 

printf ("\n\nEnter %ld characters:\n",size); 

for (ptr =data; ptr < (data+ size); ptr++) 

*ptr getchar(); 

skipgarb(); 

/*************************************************/ 

DeleteFile () /* Delete a file from current dir */ 

char *filename(),getkey(),*fname; 

printf ("Delete File\n\n"); 

fname =filename(); 

if (sure()) 

if (remove(fname) failed) 

printf ("Can't delete %s\n",fname); 

else 

printf ("File NOT deleted!\n"); 

wait() ; 

/*************************************************/ 

• 



25 - FILES AND DEVICES 

RenameFile () 

char old[fnmsize],*new; 

printf ("Rename from OLD to NEW\n\nOLD: "); 

strcpy (old,filename()); 

printf ("\nNEW: "); 

new= filename(); 

if (rename(old,new) failed) 

printf ("Can't rename %s as %s\n",old,new); 

wait(); 

/*************************************************/ 

/* Level 2 */ 

/*************************************************/ 

CreateFile (fname) 

char *fname; 

int fileportal; 

if ( (fileportal creat(fname,0)) failed) 

printf ("Can't create file %s\n",fname); 

return (failed); 

return (fileportal); 

• 



C - A DABHAND GtnDE 

/*************************************************/ 

I* Toolkit *I 
/*************************************************/ 

char *filename() /* return filename */ 

static char statfilenm[fnmsize]; 

do 

printf ("Enter filename :"); 

scanf ("%24s",statfilenm); 

skipgarb(); 

} 

while (strlen(statfilenm) 0); 

return (statfilenm); 

/*************************************************/ 

sure () /* is the user sure ? */ 

printf ("Are you absolutely certain? Y/N\n"); 

return (yes()) ; 

/*************************************************/ 

yes() 

char getkey(); 

while (true) 

II 

switch(getkey()) 

case 'y' 

case 'n' 

return (true) ; 

return (false); 



25 - FILES AND DEVICES 

/*************************************************/ 

wait() 

char getkey(); 

printf ("Press a key\n"); 

getkey (); 

} 

/*************************************************/ 

char get key () /* single key + RETURN response */ 

char ch; 

ch= getchar(); 

skipgarb(); 

return((char)tolower(ch)); 

/*************************************************/ 

skipgarb () /* skip garbage corrupting input */ 

while (getchar() != '\n') 

/* end */ 



C - A DABHAND GtnDE 

• 
C - A DABHAND GtnDE 

Questions: 
I) What are the following? 

a) filename 

b) file-pointer 

c) file -handle 

2) What is the difference between high and low­
level filing? 

3) Write a statement which opens a high-level file 

for reading. 

4) Write a statement which opens a low-level file 

for writing. 

5) Write a program which checks for illegal 

characters in text files . Valid characters are 

ASCII codes 10,13,and 32 .. 126. Anything else 

is illegal for programs. 

6) What statement performs formatted writing to 
text files? 

7) Print out all the header files on your system so 

that you can see what is defined where! 

/*************************************************/ 
/* Toolkit */ 

/*************************************************/ 
char *filename() /* return filename */ 



Structures Be 
Unions 

Grouping Data and Tidying 

Up Programs 
Tidy programs are a blessing to programmers. 

Likewise, tidy data are just as important. 

As programs become increasingly complex, their 

data also grow in complexity and they can no longer 

manage with single, independent variables or arrays. 

In this situation, a program rapidly becomes faced 

with the need for a data structure. This is where a 

new type of variable comes in - it is called a 'struct' 

type, or in other languages, a record. 'Struct' types 

or 'structures' are accompanied by a special type 

called a 'union'. 



C - A DABHAND GUIDE 

II 

Organisation: Black Box 

Data 
What is the relationship between a program and its 

data? A program can often be thought of as being a 

giant operator which operates on the memory of the 

computer. Local data are operated upon inside 

sealed function capsules, where they are protected 

from the reach of certain parts of a program. Global 

data are wide open to alteration by any part of a 

program. If a program were visualised schematically, 

what would it look like? A traditional flow diagram? 

No. A computer program only looks like a flow 

diagram at the machine code level and that is too 

primitive for C programmers. One way of visualising 

a program is illustrated by figure 26.1. 

This shows a program as a kind of society of sealed 

function capsules which work together like a beehive 

of activity on a honeycomb of program data. This 

imaginative idea of a computer program is not quite 

complete. A program has to manipulate data - it has 

to look at it, move it around and copy it from place 

to place. All of these things would be very difficult if 

data were scattered about liberally, with no 

particular structure. For this reason C has within it 

the facility to make sealed capsules - not of program 

code - but of program data, so that all of these 

actions very simply by grouping variables together in 

convenient packages for handling. These capsules 

are called structures. 



26 - STRUCfURES & UNIONS 

Figure 26.1. The progrR-m is R- irsociety" of functions 
operR-ting on R- dR-tR- structure 

struct 
A 'structure' is a package of one, or preferably more, 

variables grouped under a single name. Structures 

are not like arrays as a structure can hold any 

mixture of different data types. Structures can even 

hold arrays of different types. A structure can be as 

simple or as complex as the programmer desires. 

The word 'struct' is a reserved word in C and it 

represents a new data type, called an aggregate type. 

It is not any single type - the purpose of structures is 

to offer a tool for making whatever shape or form of 

variable package a programmer wishes . Any 

particular structure type is given a name, called a 

structure name and the variables (called members) 

within a structure type are also given names. Finally, 

every variable declared to be a particular structure 

type has a name of its own too. This plethora of 

names is not as complicated as it sounds. 



C - A DABHAND GUIDE 

• 

Declarations 
A structure is declared by making a blank template 

for a variable package. This is explained with the 

help of an example. The following statement is 

actually a declaration, so it belongs with other 

declarations, either at the head of a program or at 

the start of a block ... 

struct PersonalData 

char name[namesize]; 

char address[addresssize]; 

int YearOfBirth; 

int MonthOfBirth; 

int DayOfBirth; 

} ; 

This purpose of this statement is to create a model, 

or template, to define what variable 'struct 

PersonalData' will look like. It says, define a type of 

variable which collectively holds a string called 

'name', a string called 'address' and three integers 

called 'YearOfBirth', 'MonthOfBirth' and 

'DayOfBirth'. Any variable which is declared to be 

'struct PersonalData' type will be made up of parts 

like these. The list of variable components making 

up the structure are called the members of the 

structure. The names of the members are not the 

names of variables, but are a way of naming the parts 

which make up a structure variable. (Note: a variable 

which has been declared to be of type 'struct 

something' is usually called a 'structure' rather than 

a 'structure variable'. The distinction is maintained 

here in places where confusion might arise.) The 

names of members are held separate from the names 

of other identifiers in C, so it is quite possible to 



26 - STRUCIURES & UNIONS 

have variable names and struct member names which 

are the same. Unfortunately, older compilers did not 

support this luxury. 

At this stage, no storage has been given over to a 

variable, nor has any variable been declared - only a 

type has been defined. Having defined this type of 

structure the programmer can declare variables to be 
of this type. For example: 

struct PersonalData x; 

declares a variable called x to be of type 'struct 

PersonalData'. 'x' is certainly not a very good name 

for any variable which holds a person's personal 

data, but it contrasts well with all the other names 

which abound and so it serves its purpose for now. 

Before moving on to consider how structures can be 

used, it is worth pausing to show the different ways 

in which structures can be declared. The method 

just looked at is probably the most common, 

however there are two other methods of achieving 
the same thing. 

A variable can be declared immediately after the 

template definition: 

struct PersonalData 

char name[namesize]; 

char address[addresssize]; 

int YearOfBirth; 

int MonthOfBirth; 

int DayOfBirth; 

x; /* variable identifier follows type */ 

• 



C - A DABHAND GUIDE 

• 

Alternatively, 'typeder can be used to cut down on 

typing in the long term. This type definition is made 

when at the head of the program and then 

subsequent declarations are made by using the new 

name: 

typedef struct 

char name[namesize]; 

char address[addresssize]; 

int YearOfBirth; 

int MonthOfBirth; 

int DayOfBirth; 

PersonalData; 

then declare: 

PersonalData x; 

Any one of these methods will do. 

Scope 
Both structure types and structure variables obey the 

rules of scope, that is, a structure type declaration 

can be local or global, depending on where the 

declaration is made. Similarly, if a structure type 

variable is declared locally, it is only valid inside the 

block brackets in which it was originally defined: 

main () 

struct ONE 

int a; 

float b; 

} ; 



26 - STRUCfURES & UNIONS 

struct ONE x; 

function () 

{ struct ONE x; /* This line is illegal, since cm: */ 

/* is a local type definition */ 

/* Defined only in main() 

Using Structures 
How does a program use the variables which are 

locked inside these structures? 

The whole point about structures is that they can be 
used to group data into sensible packages which can 

then be treated as single objects. Early C compilers, 

some of which still exist, placed very severe 

restrictions on what a program could do with 

structures. Essentially, the members of a structure 

could be assigned values, and pointers to individual 

structures could be found. Although this sounds 

highly restrictive, it did account for the most 

frequent uses of structures. Modern compilers allow 

more flexible use. Programs can assign one structure 

variable to another structure variable (provided the 

structures match in type). Structure variables can be 

passed whole as parameters to functions and 

functions can return structure values. This makes 

structures extremely powerful data objects to have in 

a program. 

A structure is assigned to another structure by the 

following statements: 

struct Personal x,y; 

x = y; 

*/ 

II 



C - A DAB HAND GUIDE 

• 

The whole bundle of members is copied in one 

statement! 

Structures are passed as parameters in the usual way: 

function (x,y); 

The function then has to be declared : 

function (x,y) 

struct PersonalData x,y; 

Finally, a function which returns a structure variable 

such as: 

struct PersonalData x,function(); 

x =function(); 

would be declared in the following way: 

struct PersonalData function () 

Notice that the return type of such a function must 

also be declared in the function. You will begin to 

see that structure names account for a good deal of 

typing! The typedef statement is a very good way of 

reducing this burden. 

The members of a structure are accessed with the 

dot character ( .). This is a structure 'member 

operator' . Consider the structure variable x, which 

has the type 'struct PersonalData' . The members of 

x could be assigned by the following program: 

main () 

{ struct PersonalData x; 

FillArray ("Some name", x . name); 

FillArray ("Some address", x.address); 

x . YearOfBirth = 1987; 



26 - STRUCIURES & UNIONS 

x.MonthOfBirth = 2; 

x.DayOfBirth 19; 

Where FillArray is a hypothetical function which 

copies the string in the first parameter to the array in 

the second parameter. The dot between the variable, 

and the names which follow, implies that the 

statements in this brief program are talking about 

the members in the structure variable x, rather than 

the whole collective bundle. Members of actual 

structure variables are always accessed with this dot 

operator. The general form of a member reference 

is: 

<structure variable>.<member name> 

This applies to any type of structure variable, 

including those accessed by pointers . Whenever a 

program needs to access the members of a structure, 

this dot operator can be used. C provides a special 

member operator for pointers, however, because 

they are used so often in connection with structures. 

This new operator is described shortly. 

Arrays of Structures 
Just as arrays of any basic type of variable are 

allowed, so are arrays of a given type of structure. 

Although a structure contains many different types, 

the compiler never gets to know this information 

because it is hidden away inside a sealed structure 

capsule. It can thus believe that all the elements in 

the array have the same type, even though that type 

is made up of lots of different types! An array would 

be declared in the usual way. 

int i; 

struct PersonalData x,array[size]; 

• 



C - A DABHAND GUIDE 

The members of the arrays would then be accessed 

by statements like the following examples: 

array[i] 

array[i] 

x; 

array [ j] ; 

array[i] .YearOfBirth = 1987; 

i = array[2] .MonthOfBirth; 

This listing uses a structure type which is slightly 

different to 'PersonalData', in that string pointers 

are used instead of arrays . This allows more 

convenient handling of real-life strings. 

Listing 26.1. Structures demo #1. 

/*************************************************/ 

/* 

/* Structures Demo 

I* 

*/ 

*/ 

*/ 

/*************************************************/ 

/* Simple program to initialize some structures*/ 

/* and to print them out again. Does no error */ 

/*checking, so be wary of string sizes etc .. */ 

#include <stdio.h> 

#define name size 30 

#define addrsize 80 

#define noofpersons 20 

#define newline() putchar ( '\n'); 

/*************************************************/ 

typedef struct 

char *Name; 

char *Address; 

int YearOfBirth; 

int MonthOfBirth; 

int DayOfBirth; 

• 



26 - STRUCI1JRES & UNIONS 

PersonDat; 

/*************************************************/ 

main () /* Make some records */ 

PersonDat record[noofpersons]; 

PersonDat PersonalDetails(); 

int person; 

printf ("Birth Records For Employees"); 

printf ("\n-------­

printf ("\n\n") 

printf ("Enter data\n"); 

") ; 

for (person O; person < noofpersons; person++) 

record[person] 

newline(); 

PersonalDetails(); 

DisplayRecords (record); 

/*************************************************/ 

PersonDat PersonalDetails() /*No error checking! */ 

PersonDat dat; 

char strbuff[addrsize], *malloc(); 

printf ("Name : ") ; 

dat.Name = malloc(namesize); 

strcpy (dat.Name,gets(strbuff)); 

• 



C - A DABHAND GUIDE 

printf ("Address :"); 

dat.Address = malloc(addrsize); 

strcpy (dat.Address,gets(strbuff)); 

printf ("Year of birth:"); 

dat . YearOfBirth = getint (1900,1987); 

printf ("Month of birth:"); 

dat.MonthOfBirth = getint (1,12); 

printf ("Day of birth:"); 

dat.DayOfBirth = getint(l,31); 

return (dat); 

/*************************************************/ 

DisplayRecords (rec) 

PersonDat rec[noofpersons]; 

int pers; 

for (pers O; pers < noofpersons; pers++) 

printf ("Name : %s\n", rec[pers] .Name); 

printf ("Address : %s\n", rec[pers] .Address); 

printf ("Date of Birth: %1d/%1d/%1d\n", rec [pers] 

DayOfBirth, rec[pers] .MonthOfBirth, 

rec[pers] .YearOfBirth); 

newline(); 

/*************************************************/ 

/* Toolkit */ 

/*************************************************/ 

• 



26 - STRUCfURES & UNIONS 

getint (a,b) /* return int between a and b */ 

int a,b; 

int p, i a - 1; 

for (p=O; ((a> i) 11 (i > b)); p++) 

{ 

printf ("? : "); 

scanf ("%d",&i); 

if (p > 2) 

{ 

skipgarb(); 

p = O; 

} 

skipgarb(); 

return (i); 

/*************************************************/ 

skipgarb() /* Skip input garbage corrupting scanf */ 

while (getchar() != '\n') 

Structures of Structures 
Structures are said to 'nest'. This means that 

structure templates can contain other structures as 

members. Consider the two following structure 

types: 

struct first structure 

int value; 

float number; 
} ; 

• 



C - A DABHAND GUIDE 

• 

and: 

struct second structure 

int tag; 

struct first structure fs; 

x; 

These two structures are of different type, yet the 

first of the two is included in the second! The 

second structure would be initialised by the 

following assignments. The structure variable name 

is x: 

x.tag = 10; 

x.fs.value = 20; 

x.fs.number = 30.0; 

Notice the way the member operator' .' can be used 

over and over again. Note also that no brackets are 

necessary, because the reference which is calculated 

by this operator is worked out from left to right. 

This nesting can, in principle, go on many times 

though some compilers might place restrictions 

upon this nesting level. Statements such as: 

variable.tagl.tag2.tag3.tag4 = sarething; 

are probably OK although they aren't good 

programming. Structures should nest safely a few 

times. 

A word of caution is in order here. There is a 

problem with the aforementioned scheme which 

hasn't been considered yet. It is this: What happens 

if a structure contains an instance of itself? For 

example: 

struct Regression 



26 - STRUcruRES & UNIONS 

int i; 

struct Regression tag; 

} ; 

There is simply no way that this kind of statement 

can make sense, unless the compiler's target 

computer has an infinite supply of memory! 

References to this type of variable would go on for 

ever and an infinite amount of memory would be 

needed for every variable. For this one reason, it is 

forbidden for a structure to contain an instance of 

itself. What is not forbidden, however, is for a 

structure to contain an instance of a pointer to its 

own type. This is because a pointer is not the same 

type as a structure, it is merely a variable which holds 

the address of a structure. Pointers to structures are 

quite invaluable for building data structures such as 

linked lists and trees. These extremely valuable 

devices are described below. 

Pointers to Structures 
A pointer to a structure type variable is declared by a 

statement like: 

struct Name *ptr; 

Ptr is then, formally, a pointer to a structure of type 

'Name' only. It can be assigned to any other pointer 

of similar type and it can be used to access the 

members of a structure. It is in the second of these 

actions that a new structure operator is revealed. 

According to the rules which have been described so 

far, a structure member could be accessed by 

pointers with the following statements: 

struct PersonalData *ptr; 

(*ptr) .YearOfBirth 20; 

• 



C - A DABHAND GUIDE 

This says, let the member 'YearOfBirth' of the 

structure pointed to by ptr, have the value 20. 

Notice that *ptr by itself means the contents of the 

address which is held in ptr. Notice too that the 

brackets around this statement avoid any confusion 

about the precedence of these operators. 

There is a better way to write the above statement 

using a new operator: '->'. This is an arrow made 

out of a minus sign and a 'greater than' symbol. It is 

used in the following way: 

struct PersonalData *ptr; 

ptr->YearOfBirth = 20; 

This statement is identical in every way to the first 

version, but as this kind of access is required so 

frequently when dealing with structures, C provides 

this special operator to make the operation clearer. 

It is assumed that ptr has been assigned to the 

address of some pre-assigned structure: for example, 

by means of a statement such as: 

ptr = &x; 

where x is a pre-assigned structure. 

Listing 26.2. Structures demo #2. 

/*************************************************/ 

/* 

/* Structures Demo #2 

I* 

*/ 

*/ 

*/ 

/*************************************************/ 

/* This is the same program, using pointer references */ 

/* instead of straight variable references. i.e. this */ 

/* uses variable parameters instead of value params */ 

#include <stdio.h> 

• 
C - A DABHAND GUIDE 

and: 

struct second structure 



26 - STRUCIURES & UNIONS 

#define namesize 30 

#define addrsize 80 

#define noofpersons 20 

#define newline() putchar ( '\n'); 

/*************************************************/ 

typedef struct 

char *Name; 

char *Address; 

int YearOfBirth; 

int MonthOfBirth; 

int DayOfBirth; 

PersonDat; 

/*************************************************/ 

main () /* Make some records */ 

PersonDat record[noofpersons]; 

int person; 

printf ("Birth Records For Employees"); 

printf ("\n -"); 

printf ("\n\n"); 

printf ("Enter data\n"); 

for (person O; person < noofpersons; person++) 

PersonalDetails(&(record[person])); 

• 



C - A DABHAND GUIDE 

newline(); 

DisplayRecords (record); 

/*************************************************/ 

PersonalDetails(dat) /* No error checking! */ 

PersonDat *dat; 

char strbuff[addrsize], *malloc(); 

printf ("Name :"); 

dat->Name = malloc(namesize); 

strcpy (dat->Name,gets(strbuff)); 

printf ("Address :"); 

dat->Address = malloc(addrsize); 

strcpy (dat->Address,gets(strbuff)); 

printf ("Year of birth:"); 

dat->YearOfBirth = getint (1900,1987); 

printf ("Month of birth:"); 

dat->MonthOfBirth = getint (1,12); 

printf ("Day of birth:"); 

dat->DayOfBirth = getint(l,31); 

/*************************************************/ 

DisplayRecords (rec) 

PersonDat rec[noofpersons]; 

• 



26 - STRUCIURES & UNIONS 

int pers; 

for (pers 0; pers < noofpersons; pers++) 

printf ("Name : %s\n", rec[pers] .Name); 

printf ("Address : %s\n", rec[pers] .Address); 

printf("Date of Birth: %ld/%1d/%1d\n", 

rec[pers] .DayOfBirth, 

rec[pers] .MonthOfBirth, rec[pers]. 

YearOfBirth) ; 

newline(); 

/*************************************************/ 

/* Toolkit */ 

/*************************************************/ 

/* As before */ 

Pre-initialising Static 
Structures 
In Chapterl9 it was shown how static and external 

type arrays could be initialised with values at compile 

time . Static and external structures can also be pre­

assigned by the compiler so that programs can set up 

options and starting conditions in a convenient way. 

A static variable of type PersonDat (as in the 

example programs) could be declared and initialised 

in the same statement: 

#define namesize 20 

#define addresssize 22 

struct PersonDat 

• 



C - A DABHAND GUIDE 

• 

char *name; 

char *address; 

int YearOfBirth; 

int MonthOfBirth; 

int DayOfBirth; 

} ; 

main () 

static struct PersonalData 

variable = 

"Alice Wonderment", 

"Somewhere in Paradise", 

1965, 

5, 

12 

} ; 

/* rest of program */ 

The items in the curly braces are matched to the 

members of the structure variable, and any items 

which are not initialised by items in the list are filled 

out with zeros. 

Creating Memory for 
Dynamical Struct Types 
Probably the single most frequent use of struct type 

variables is in the building of dynamical data 

structures . Dynamical (or usually just 'dynamic') 

data is created explicitly by a program using a 

scheme of memory allocation and pointers. Normal 

program data, which is reserved space by the 

compiler are static data structures because they do 



26 - STRUCTIJRES & UNIONS 

not change during the course of a program - an 

integer is always an integer and an array is always an 

array. Their sizes cannot change while the program 

is running. 

A dynamical structure is built using the memory 

allocation function: 

malloc () 

and pointers. The idea is to create the memory space 

for a new structure as and when it is needed, and to 

use a pointer to access the members of that 

structure, using the'->' operator. 

malloc was described in Chapter 20 in connection 

with strings. It allocates a fixed number of bytes of 

memory and returns a pointer to that data. For 

instance, to allocate 10 bytes, you would write 

something like this: 

char *malloc(), *ptr; 

ptr = malloc(10); 

ptr is then a pointer to the start of that block of 10 
bytes. 

When a program wants to create the space for a 

structure, it has a template for that structure, which 

was used to define it. However, it does not generally 

know in advance, how many bytes long a structure 

is. In fact, it is seldom possible to know this 

information, as a structure may occupy more 

memory than the sum of its parts. How then does a 

program know how much space to allocate? The C 

compiler comes to the rescue here, by providing a 

compile time operator called: 

sizeof () 

which calculates the size of an object while a 

program is compiling. For example: 



C - A DABHAND GUIDE 

• 

size of\ int) Works out the number of bytes 

occupied by the type 'int' 

sizeof\char) Works out the number of bytes 

occupied by a single character. This 

equals one in fact 

sizeof\struct PersonalData) works out the number of 

bytes needed to store a single structure variable. 

Obviously this tool is very useful for working with 

malloc. The memory allocation statement becomes 

something like: 

ptr = malloc(sizeof(type_name)); 

There is a problem with this statement though -

malloc is declared as a function which returns a type 

'pointer to character' whereas here, the programmer 

is interested in pointers of type 'pointer to struct 

Something' . malloc has to be forced to produce a 

pointer of the correct type then and this is done by 

using the cast operator to mould it into shape. The 

cast operator casts pointers with a general form: 

(type *) <value> 

Consider the following example of C source code 

which allocates space for a structure type called 

'SomeStruct', and creates a correctly aligned pointer 

to it, called ptr: 

struct SomeStruct *ptr; 

char *malloc(); 

ptr (struct SomeStruct *) 

malloc(sizeof(struct 

Somestruct)); 

This rather laboured statement provides both the 

memory and the location of that memory in a legal 

and type-sensical way. 

The next chapter discusses what a programmer can 

do with dynamically allocated structures . 



26 - SfRUCfURES &: UNIONS 

Unions 
A union is like a structure in which all the members 

are stored at the same address. Only one member 

can be stored in such an object at any one time, as it 

would be overwritten by another. Otherwise unions 

behave like specially-sized storage containers which 

can hold many different types of data. A union can 

hold any one of its members, but only at different 

times. The compiler arranges that a union type 

variable is big enough to handle the job. 

Declaration 
A union is declared in the same way as a structure. It 

has a list of members, which are used to mould the 

type of object concerned: 

union IntOrFloat 

int ordinal; 

float continuous; 

} ; 

This declares a type template. Variables are then 

declared as: 

union IntOrFloat x,y,z; 

At different times the program is to treat x,y and z as 

being either integers or float types. When the 

variables are referred to as: 

x.ordinal = l; 

the program sees 'x' as being an integer type. At 

other times, when x is referred to as x.continuous, it 

takes on another aspect - its alter ego, the float type. 

Notice that x by itself does not have a value, only its 

members have values. X is just a box for the different 

members to share . 

II 



C - A DABHAND GUIDE 

• 

Using Unions 
Unions are used in just the same ways as structures. 

The dot operator selects the different members for 

variable and the arrow selects different values for 

pointers. The form of such statements is: 

union_ variable.member; 

union_pointer->member; 

Unions are seldom very useful in programs, as a 

program has no automatic way of knowing what 

type of member is currently stored in the union 

type . One way to overcome this is to keep a variable 

which signals the type currently held in the variable. 

This is done very easily with the aid of enumerated 

data. 

Consider the following kind of union: 

union WhichType 

int ordinal; 

float continuous; 

char letter; 

} i 

This could be accompanied by an enumerate 

declaration such as: 

enum Types 

INT, 

FLOAT, 

CHAR 

) i 

Variables could then go in pairs: 

union WhichType x; 

enum Types x_status; 

which would make union type-handling straight 

forward: 



26 - STRUCfURES & UNIONS 

switch (x_status) 

case INT x.ordinal 12; 

break; 

case FLOAT x.continuous 12.23; 

break; 

case CHAR : x.letter '*' . , 

These variables could even be grouped into a 

structure: 

struct Union Handler 

union WhichType x; 

enum Types x_status; 

var; 

which would then require statements such as: 

var.x.ordinal = 2; 

ptr->x.ordinal = 2; 

var.x status CHAR; 

Questions: 
1) What is the difference between a structure and a 

union? 

2) What is a member? 

3) If x is a variable, how would you find out the 
value ofa member called 'mem'? 

4) If ptr is a pointer to a structure, how would you 

find out the value of a member called 'mem'? 

5) A union is a group of variables in a single 

package. True or false? 

• 



C - A DABHAND GUIDE 

• 



II 

ED Data 
Structures 

Uses for struct Variables 
and Structure Diagrams 
This section is advanced. You may wish to omit it on 

first reading. 

Data structures are organised patterns of data. The 

purpose of building a data structure is to create a 

pattern of information which models a particular 

situation clearly and efficiently. Take the simplest 

kind of data structure, the array. Arrays are good for 

storing patterns of information which look like 

arrays, or share the same structure. For example, a 

chess board looks like a two-dimensional array, so a 

chess game would naturally use a two-dimensional 



C - A DABHAND GUIDE 

• 

array to store the positions of pieces on the board. 

The aim of a data structure is to model real life 

patterns with program data. 

Most application programs require more complex 

data structures than C variables can offer - often 

arrays are not suitable structures for a given 

application. To see this, consider an application 

example in which a program stores a map of the 

local countryside. This program has to store 

information about individual towns and it has to be 

able to give directions to the user about how to get 

to particular towns from some reference point. In 

real life, all of this information is most easily 

conveyed by means of a map, with towns' vital 

statistics written on it (see figure 27.1) . The diagram 

shows such a simplified map of the surrounding 

land. This sort of map is ideally, just what a 

computer ought to be able to store. The handicap is 

that the map does not look very computerish. If the 

map is ever going to be stored in a computer, it will 

need to look more mechanical. A transformation is 

needed . In order to make the map into a more 

computer-like picture, it must be drawn as a 

structure diagram. 

A structure diagram is a picture which shows how 

something is connected up. Most often a structure 

diagram shows how a problem is 'connected up' by 

relating all the parts which go together to make it 

up. In this case, the structure diagram just shows 

how program data are related to one another . 



27 - DATA STRUCTIJRES 

27.1. A conceptual diagram. 

Data Structure Diagrams 
Now examine figure 27.2 . This diagram is a data 

structure diagram. It demonstrates how boxes of 

data must relate to one another in order to solve the 

problem of the towns map . It has been drawn, quite 

deliberately, in a way which is intended to conjure 

up some particular thoughts. The arrows tend to 

suggest that pointers will play a role in the data 

structure . The blocks tend to suggest that sealed 

capsules or 'struct' type data will also play a role. 

Putting these two together creates the idea of a 

'town structure' containing pointers to neighouring 

villages which lie on roads to the north, south, east 

and west of the town, as well as the information 

about the town itself. This town structure might 

look something like this: 

struct Town 

struct Town *north; 

N 

s 

• 



C - A DABHAND GillDE 

A 

D 

• 

struct Town *south; 

struct Town *east; 

struct Town *west; 

struct Localinfo help; 

} ; 

c 

E F 

Figure 27.2.Mech~nised di~gr~m. 

Assume for now that Locallnfo is a structure which 

contains all the information about a town required 

by the program. This part of the information is 

actually irrelevant to the structure of the data 

because it is hidden inside the sealed capsule. It is 

the pointers which are the main items of concern, 

because these contain information that enables a 
program to find its way around the map very 

quickly. If the user of this imaginary application 

program wished to know about the town to the 

north of one particular place, the program would 

only have to refocus its attention on the new 

structure which was pointed to by the struct 

member 'north' and similarly for other directions . 



27 - DATA STRUCTURES 

A data structure is built up, like a model, by 

connecting struct type variables together with 

pointers: these are the building blocks. 

By thinking of struct types and pointers in terms of 

pictures, you begin to understand how structures 

can be fashioned, in computer memory to look 

exactly like the problems which they represent. 

There is an interesting point to be made about data 

structure diagrams. It's worth remarking about the 

way in which these data structure diagrams resemble 

the structure diagrams of C programs, which were 

drawn in Chapter 7, and will be drawn again in the 

next chapter. There is a simple reason for this 

similarity - computer programs are just data 

structures in which the data are program instructions 

and the pointers and sealed boxes are function calls. 

The structure of a computer program is called a 

hierachy. Sometimes the shape of data structures and 

programs are identical. When this happens, a kind of 

optimum efficiency has been reached in conceptual 

terms . Programs which behave exactly like their 

data, operate very simply. This is the reason why 

structure diagrams are so useful in programming - a 

structure diagram is a diagram which solves a 

problem and does so in a pictorial way, which 

models the way we think. 

The Tools: Structures, 
Pointers and Dynamic 
Memory 
The tools of the data structure trade are struct types 

and pointers . Data structures are built out of 

dynamically allocated memory, so storage places do 

not need names - all a program needs to do is to 

• 



C - A DABHAND GUIDE 

• 

keep a record of a pointer to a particular storage 

space, and the computer will be able to find it at any 

time after that. Pointers are the keys which unlock a 

program's data. The reader might object to this by 

saying that a pointer has to be stored in some C 

variable somewhere, so does a program really gain 

anything from working with pointers? The answer is 

yes, because pointers in data structures are invariably 

chained together. to make up the structure. To 

understand this, make a note of the following two 

terms: 

Root This is a place where a data structure starts. 

Every chain has to start somewhere. The 

address of the root of a data structure has to 

be stored explicitly in a C variable. 

Links A link is a pointer to a new struct type.Links 

are used to chain structures together. The 

address of the next element in a chain 

structure is stored inside the previous 

structure. 

Data structures do not have to be linear chains and 

they are often not. Structures, after all, can hold any 

number of pointers to other structures, so there is 

the potential to branch out into any number of new 

structures. In the map example, there were four 

pointers in each structure, so the chaining was not 

linear, but more like a lattice. 

Programmers should be concerned about where and 

how data structures are going to be stored. 

Remember that pointers alone do not create any 

storage space - they are only a way of finding out 

the contents of storage space which already exists. In 

fact, a program must create its own space for data 

structures, in the same way in which space had to be 

allocated for strings in Chapter 20. The key phrase is 



27 - DATA STRUCTIJRES 

dynamic storage: a program makes space for 

structures as new ones are required and deletes space 

which it does not require . The functions which 

perform this memory allocation and release are: 

malloc and free 

There are some advantages which go with the use of 

dynamic storage for data structures and they are 

summarised by the following points: 

I) Since memory is allocated as it is needed, the 

only restriction on data size is the memory 

capacity of the computer. 

2) Using pointers to connect structures means that 

they can be re-connected in different ways as the 

need arises. For example, data structures can be 
sorted. 

3) Data structures can be made up of lots of' lesser' 

data structures, each held inside struct type 

storage. Limitations are few. 

The remaining parts of this chapter aim to provide 

you with a basic plan or formula for putting data 

structures together in C. This is done with recourse 

to two example structures, which become two 

example programs in the next chapter. 

Programme for Building 
Data Structures 
In writing programs which centre around their data, 

such as wordprocessors, accounts programs or 

database managers, it is extremely important to plan 

data structures before any program code is written. 

Changes in program code do not affect data 

structure, but alterations to a data structure imply 

drastic changes to program code . Only in some 

• 



C - A DABHAND GUIDE 

• 

numerical applications does a data structure actually 

assist an algorithm rather than vice versa. 

The steps which a programmer would undertake in 

designing a data structure follow a basic pattern: 

1) Group all the data, which must be stored, 

together and define a struct type to hold them. 

2) Think of a pattern which reflects the way in 

which the data are connected and add structure 

pointers to the struct definition to connect 

them. 

3) Design the programming algorithms to handle 

the memory allocation, link pointers and data 

storage . 

Setting Up a Data 
Structure 
When the basic mould has been cast for the building 

blocks, a program actually has to go through the 

motions of putting all the pieces together, by 

connecting structures together with pointers and 

filling them up with information. The data structure 

is set up by repeating the following actions as many 

times as is necessary. 

1) Define a struct type. For example: 

struct Town 

struct Town *north; 

struct Town *south; 

struct Town *east; 

struct Town *west; 

struct Local Info help; 

} ; 



27 - DATA STRUCTURES 

2) Declare two pointers to this type: 

struct Town *ptr,*root; 

One of these is used to hold the root of the data 

structure and the other is used as a current 

pointer. 

3) Allocate memory for one structure type: 

root= (struct Town*) malloc(sizeof(struct Town)); 

Be careful to check for errors. Root will be 

NULL if no memory could be allocated. 

4) Initialise the members of the structure with 

statements such as: 

root->north 

root->south 

NULL; 

NULL; 

root->help.age = 56; /*if age is a rrerber*/ 

/*of struct Localinfo*/ 

This sets the pointers 'north' and 'south' to the 

value NULL, which conventionally means that 

the pointer actually does not point anywhere. 

NULL 

west struct name a a east 
NULL ® ~1-------~ 

"ptr = malloc· 

south 

ROOT 

NULL 

Figure 27.3. Connecting data with pointers . 

struct name 

• 



C - A DABHAND GUIDE 

ROOT 

A 

• 

5) When other structures have been created, the 

pointers can be assigned to them: 
ptr = (struct Town*) malloc(sizeof(struct Town)); 

ptr->north = NULL; 

ptr->south = NULL; 

/*etc .. initialize members*/ 

root->north = ptr; 

This last statement connects the new structure 

onto the north branch of root. 

NULL pointer assignments tell the program 

handling the data structure when it has come to the 

edge of the structure: that is when it has found a 

pointer which doesn't lead anywhere. 

Example Structures 
There are two data structures which are so common 

that it is almost hard to write applications which do 

not use them! These two are called the 'linked list' 

and the 'binary tree', and both work on the 

principles just outlined. They are just different 

manifestations of the same thing. 

struct struct struct NULL 

LINKED LIST 

B D c ? 

Figure 27.4. A Linked Li.st . 



27 - DATA STRUCTURES 

A linked list is a 'linear' sequence of structures 

joined together by pointers. If a structure diagram 

were drawn of a linked list, all the storage blocks in 

it would lie in a straight line, without branching out: 

struct list 

double value; 

struct list *succ; 

} ; 

A linked list has only a single pointer per structure, 

which points to the successor in the list. If the 

blocks were labelled A, B, C, D, E ... then B would 

be the successor of A, C would be the successor of B 

and so on. 

Linked lists have two advantages over one­

dimensional arrays - they can be sorted easily and 

they can be made any length at all. 

A binary tree is a sequence of structures, each of 

which branches out into two new ones: 

struct BinaryTree 

/* other info */ 

struct BinaryTree *left; 

struct BinaryTree *right; 

*tree NULL; 

• 



C - A DABHAND GUIDE 

ROOT 

DODD 

• 

Figure 27.5. Bin1iry tree pointers. 

A binary tree structure has two pointers per struct 

type. This is useful for classifying data on a greater 

than/less than basis. Right and left branches are 

taken to mean 'greater than' and 'less than' 

respectively. 

The programs which handle these data structures are 

written in the form of complete, usable application 

programs. They are simple by professional standards, 

but they are long by book standards so they are 

explained in a chapter by themselves, along with 

their accompanying programmers' documentation. 

See Chapter 30. 

Questions: 
I) What is a structure diagram? 

2) How are data linked together to make a data 

structure? 



27 - DATA STRUCTIJRES 

3) Every separate struct type in a data structure has 

its own variable name. True or false? 

4) How are the members of structures accessed in a 

data structure? 

5) Write a statement which creates a new structure 

of type 'struct BinaryTree' and finds its address. 

Store that address in a variable which is declared 

as follows: 

struct BinaryTree *ptr; 

6) Write a small program which makes a linked list, 

three structures long and assigns all their data to 

be zero. Can you automate this program with a 

loop? Can you make it work for any number of 

structures? 

II 



C - A DABHAND GUIDE 

• 



Recursion 

The Dmmon Which 
Swallowed Its Tail 
This section is advanced. You may wish to omit it on 

first time reading. 

This section is about program structures which can 

talk about themselves. Examine the function below: 

Well Function () 

/* ... other statements ... */ 

Well_Function (); 

Well_Function is said to be a recursive function. It is 

defined in terms of itself: it contains itself and it calls 



C - A DABHAND GUIDE 

itself. It swallows its own tail! The act of self­

reference is called recursion. What happens to such a 

function when it is called in a C program? In the 

simple example above, something dramatic and fatal 

happens. The computer naturally begins executing 

the statements in the function, inside the curly 

braces . This much is only normal - programs are 

designed to do this and the computer could do no 

more and no less . Eventually the program comes 

upon the statement 'Well_Function;' and it makes a 

call to that function again . It then begins executing 

statements in Well_function, from the beginning, as 

though it were a new function, until it comes upon 

the statement 'Well_Function' and then it calls the 

function again, and again ... 

This kind of function-calling scenario is doomed to 

continue without end, as, each time the function is 

called, it is inevitably called again. The computer 

becomes totally consumed with the task of calling 

'Well_Function' over and over. It is apparently 

doomed to repeat the same procedure for ever. Or is 

it? 



28 - RECURSION 

RECURSION 

R 
..-lu-nct_lo_n_1_(_)-. F\ 

What becomes of a function which calls itself? 
The function drops down a kind of well within itself. 

RECURSION CANNOT BE SEEN 
ON A STRUCTURE DIAGRAM. 
IT HAPPENS INSIDE A FUNCTION 

Figure 28.l Recursion: Things inside themselPes. 



C - A DAB HAND GUIDE 

• 

Functions and The Stack 
It is worth pausing to think about the exact 

sequence of events which takes place when a 

function is called in a program. This will help to cast 

some light on the mechanics of recursion and 

recursive functions. 

When a function is called, control passes from one 

place in a program to another place. The statements 

in this new region of the program are carried out 

and then control returns to a statement immediately 

following the one which made the function call. But 

how does the computer know where it must go back 

to when it has finished with a function call? It is 

suddenly thrown into a wildly different region of the 

memory and finds itself executing statements there. 

How can it get back again? A diagram does not 

answer this question: program structure diagrams 

hide this detail from view: 

function!() 

I \ 
I \ 

function2() 

I \ 
function3() 

I \ 
The answer to this puzzle is that the computer keeps 

a record of the addresses of the places to which it 

must return, no matter how many times functions 

are called . It does this by building a special data 

structure called a 'stack'. 

A stack is quite literally a data pile, organised in the 

memory. Information is placed on top of a stack and 

taken from the top. It is called a 'last in/first out' 

structure because the last thing to go on the top of a 

stack is always the first thing to come off it. C 

organises a stack structure when it runs a program 

and uses it for storing local variables and for keeping 



track of where it has to return to. When it calls a 

function, it leaves itself a reminder, on the top of its 

program stack, which tells it where it has to go to 

when it has finished executing that function. C 

management makes sure that it does not put 

anything else on top of that reminder to spoil the 

flow of control. When a function is finished, the 

program takes the first message from the top of the 

stack and carries on executing statements at the 

place specified by the message. Normally this 

method works perfectly, without any problems at all. 

Functions are called and they return again; the stack 

grows and shrinks and all is well. 

} • 1 STACK FRAME (LEVEL) 

r 
Figure 28.2. The St3ck. 

stacks build up 
one level at a time 

What happens when a recursive function, like 

'Well_Function' calls itself? The system works as 

normal. C makes a note of the place it has to return 

28 - RECURSION 

• 



C - A DABHAND GtnDE 

• 

to and puts that note on top of the stack. It then 

begins executing statements. When it comes to the 

call 'Well_Function' again, it makes a new note of 

where it has to come back to and deposits it on top 

of the stack. It then begins the function again and 

when it finds the function call, it makes a new note 

and puts on the top of the stack. As this process 

continues, the memory gets filled up with the 

program's messages to itself and the stack of 

messages gets larger and larger. As the function has 

no chance of returning control to its caller, the 

messages never get taken off the stack and it just 

builds up. Eventually the computer runs out of 

memory and the computer crashes or interrupts the 

program with a fatal error message. 

Levels and Wells 
A stack is made up of frames or levels. Each time a 

function is called, the program is said to drop down 

a level. This is the reason for structure comments 

like: 

/***********************************/ 
/* Level 1 */ 

/***********************************/ 

in the programs in this book. The main function is 

at level zero because it is the root of the program. If 

main calls any functions at all, control drops down 

to level one. When a level one function returns, it 

hands control back to level zero. These level 

numbers actually count the height of the program 

stack at any point in a program. The level number is 

the number of messages or reminders on the stack. 

A function like 'Well_Function' digs itself a well of 

infinite depth . It punches a great hole in a program; 

it has no place in a levelled structure diagram. The 



function is 'sick' because it causes the stack to fill up 

the computer's memory. A better name for this 

function would be: 

28 - RECURSION 

StackOverflow() /* Causes stack to grow out of control */ 

StackOverflow(); 

} 

Tame Recursion and Self-
Similarity 
Recursion does not have to be so dramatically 

disastrous as the example given. If recursion is 

tamed, it provides a powerful way of handling 

certain kinds of problem in programming, 

particularly those concerning data structures. 

In Chapter 27 it was remarked that programs and 

data structures aim to model the situation they deal 

with as closely as possible. Some problems are made 

up of many levels of detail (see the introduction to 

this book), and the details are identical at all levels. 

As recursion is about functions which contain 

themselves at all levels, this tends to suggest that 

recursion would be useful for dealing with these self­

si mil ar problems. Data structures are prime 

candidates for this because they are made up of 

identical structure types, connected together in a 

way which make them look like programs connected 

up by function calls. 

Recursive functions can be tamed by making sure 

that there is a safe exit for them, so that recursion 

only happens under particular circumstances. The 

aim is to control the number of times that recursion 

takes place by making a decision about what 

happens in the function: the decision about whether 

• 



C - A DABHAND GUIDE 

• 

a function calls itself or not. For example, it is easy 

to make 'Well_Function' recurse four times only, by 

making a test as follows: 

Well_Function(nooftimes) 

int nooftimes; 

if (nooftimes == 0) 

return (0); 

else 

Well_Function(nooftimes-1); 

A call of Well_Function( 4) would make this 

function drop down four stack levels and then 

return . Notice the way in which the if ... else 

statement shields the program from the recursion 

when 'nooftimes' equals zero. It effectively acts as a 

safety net, stopping the program from plunging 

down the level well infinitely. 

Simple Example Without a 
Data Structure 
A standard example of controlled recursion is the 

factorial (or gamma) function. This is a 

mathematical function which is important in 

statistics . (Mathematicians also deal with recursive 

functions; computer programs are not alone in this.) 



The factorial function is defined to be the 'product' 

(multiplication) of all the natural (unsigned integer) 

numbers from one to the parameter of the function . 

For example: 

factorial (4) 1 * 2 * 3 * 4 == 24 

factorial(6) ~ 1 * 2 * 3 * 4 * 5 * 6 ~ 720 

Formally, the factorial function is defined by two 

mathematical statements: 

factorial (n) = n * factorial(n-1) 

and also: 

factorial (0) = 1 

The first of these statements is recursive, because it 

defines the value of factorial(n) in terms of the 

factorial function of (n-1 ). This strange definition 

seems to want to lift itself by its very boot-straps! 

The second statement saves it, by giving it a 

reference value. The factorial function can be written 

down immediately, as a controlled recursive 

function: 

factorial(n) 

unsigned int n; 

if (n 0) 

return (1); 

else 

return (n * factorial(n-1)); 

28 - RECURSION 

• 



C - A DABHAND GUIDE 

II 

To see how this works, try following it through for 

n equals three. The following statement: 

factorial (3); 

causes a call to be made to 'factorial'. The value of n 

is set to three. factorial then tests whether n is zero 

(which it is not), so it takes the alternative branch of 

the if...else statement. This instructs it to return the 

value of: 

3 * factorial(3-1) 

In order to calculate that, the function has to call 

factorial recursively, passing the value ( 3-1) or two 

to the new call. The new call takes this value, checks 

whether it is zero (it is not) and tries to return the 

value 2 * factorial(!). In order to work this out, it 

needs to call factorial again, which checks that n is 

not zero (it is not), and so tries to return 1 * 
factorial(O). Finally, it calls factorial(O) which does 

not call factorial any more, but starts unloading the 

stack and returning the values. The expression goes 

through the following steps below before finally 

being evaluated: 

factorial (3) 3 * factorial(2) 

3 * (2 * factorial (1)) 

3 * (2 * (1 * factorial(O))) 

3 * (2 * (1 * 1))) 

== 3 * 2 * 1 * 1 

Try to write this function without using recursion 

and compare the two. 

Simple Example With a 
Data Structure 
A data structure earns the name recursive if its 

structure looks identical at every point within it. The 



simplest recursive structure is the linked list. At every 

point in a linked list, there are some data of identical 

type and one pointer to the next structure. The next 

simplest structure is the binary tree. This structure 

splits into two at every point. It has two pointers, 

one which branches left and one which branches to 

the right. Neither of these structures goes on for 

ever, so it seems reasonable to suppose that they 

might be handled easily using controlled recursive 

functions. Examples are presented in Chapter 29 on 

Toolkits. Here is one of them, examined in detail. 

Deletetoend is a function which releases the 

dynamic memory allocated to a linked list in one go . 

The problem it faces is this: if it deletes the first 

structure in the list, it will loose information about 

where the rest of the list is, because the pointer to 

the successor of a structure is held in its predecessor. 

It must therefore make a note of the pointer to the 

next structure in the list, before it deletes that 

structure or it will never be able to get beyond the 

first structure in the list. The solution is to delete the 

list backwards from last to first using the following 

recursive routine : 

/* structure definition */ 

struct list 

/* some other data members */ 

struct list *succ; 

} ; 

28 - RECURSION 

/*************************************************/ 

struct list *deletetoend (ptr) 

struct list *ptr; 

• 



C - A DABHAND GUIDE 

if (ptr != NULL) 

deletetoend (ptr->succ); 

releasestruct (ptr); 

return (NULL); 

/*************************************************/ 

• 

releasestruct (ptr) /* release rrem;)r:y back to pool */ 

struct list *ptr; 

if (free ((char *) ptr) != 0) 

printf ("DEBUG [ZO/TktDtStrct] memory 

release failure\n"); 

The user supplies a pointer to the place he/she 

would like the list to end . This need not be the 

beginning - it could be any place in the list . The 

function then eliminates all structures after that 

point, up to the end of the list. It does assume that 

the programmer has been careful to ensure that the 

end of the list is marked by a NULL pointer! This is 

the conventional way of denoting a pointer which 

does not point anywhere. If the pointer supplied is 

already NULL then this function does nothing. If it 

is not NULL, then it executes the statements 

enclosed by the 'if' braces. Notice that deletetoend 

calls itself immediately, passing its successor in the 

list as a parameter (ptr->succ) . The function keeps 

doing this until it finds the end on the list. The very 

last-called deletetoend then reaches the statement 

releasestruct, which frees the memory taken up by 



the last structure and hands it back to the free 

memory pool. That function consequently returns 

and allows the second-last deletetoend to reach the 

releasestruct statement, releasing the second last 

structure (which is now on the end of the list). This, 

in turn, returns and the process continue until the 

entire list has been deleted. The function returns the 

value NULL at each stage, so that when called, 

deletetoend offers a very elegant way of deleting part 

or all of a linked list: 

struct list *newlast; 

28 - RECURSION 

newlast->succ deletetoend (newlast->succ); 

ptr = deletetoend (ptr); 

newlast then becomes the new end of the list, and its 

successor is NULLified in a single statement. 

Advantages and 
Disadvantages of Recursion 
But why should programmers want to clutter up 

programs with techniques as mind-boggling as 

recursion at all? 

The great advantage of recursion is that it makes 

functions very simple and allows them to behave just 

like the data structure they are attempting to model. 

Unfortunately there are few situations in which 

recursion can be employed in a practical way. The 

major disadvantage of recursion is the amount of 

memory required to make it work. Don't forget that 

the program stack grows each rime a function call is 

made. If a recursive function buried itself a thousand 

levels deep, a program would almost certainly run 

out of memory. There is also the slight danger that a 

• 



C - A DABHAND GlnDE 

II 

recursive function will go out of control if a program 

contains bugs. 

Recursion and Global 

Variables 
Global variables and recursion do not mix well. 

Most recursive routines only work because they are 

sealed capsules, and what goes on inside them can 

never affect the outside world. The only time that 

recursive functions should attempt to alter global 

storage, is when the function concerned operates on 

a global data structure, as in the previous example. 

To appreciate the danger, consider a recursive 

function, in which a second function alterGLOBAL 

accidentally alters the value of GLOBAL in the 

middle of the function : 
int GLOBAL = -2; 

recursion () 

if (++GLOBAL == 0) 

return (0); 

alterGLOBAL(); /*another function which alters GLOBAL*/ 

recursion(); 

This function is treading a fine line between safety 

and digging its own recursive grave. If 

alterGLOBAL makes GLOBAL more negative, as 

fast as ++ can make it more positive, then GLOBAL 

will never be able to satisfy the condition of being 



zero . It will go on making recursive calls, never 

returning. If alterGLOBAL makes the mistake of 

setting GLOBAL to a positive value, then the ++ 

operator in recursion can only make GLOBAL 

larger. It will never be able to satisfy the condition 

that GLOBAL equals zero, and so again the 

function would never be able to return. The stack 

would fill up the memory and the program would 

plunge down a bottomless recursive well . 

If global variables and parameters are used instead, 

this difficulty can be controlled much more easily. 

AlterGLOBAL cannot alter a variable in recursion 

by accident, if only local variables are used, because 

it only works with its own local copies of parameters 

and variables which are locked away in a sealed 

capsule, out of harm's way. 

Questions: 
I) What is a recursive function? 

2) What is a program 'stack' and what is it for? 

3) State the major disadvantage ofrecursion . 

28 - RECURSION 

• 



C - A DABHAND GIBDE 

• 



Toolkits 

A toolkit is a set of functions which can be used over 

and over again in programs. Toolkits are created by 

programmers when they come upon particular 

functions, or sets of functions, which can be used in 

other programs. Experienced programmers learn to 

be aware of this possibility and to recognise 

programming tasks which are general, or have been 

used before, and separate off those parts. A strict set 

of program structuring rules (as described in 

Appendix A) can help with this. Toolkits are then 

created automatically. 

The point about toolkits is not necessarily that they 

have to be used without modification in every 

program, but that they form a basic set of 

'customisable commands' which cut down the 

amount of work needed in programming. Ideally, a 

program should try to make the best of each 



C - A DAB HAND GUIDE 

program individually. Functions in a toolkit can 

always be altered to suit a particular application. 

Most of the functions listed below have proven to be 

useful in writing the programs for this book. 

The toolkits provided here contain routines in the 

following areas of programming: 

1) Linked list data structure 

2) Console output 

3) Console input 

4) Complex numbers 

The salient points of these functions are described 

below: 

/*************************************************/ 
/* Toolkit Linked List */ 

/*************************************************/ 

/*The following functions require a defintion like ... */ 

struct list 

/* some other data members */ 

struct list *succ; 

} ; 

/*************************************************/ 
#define true 

#define false 

#define off 

#define set 

1 

0 

0 

1 

struct list *ROOT,*ptr; 

ROOT is a GLOBAL variable of type 'struct list' 

which points to the start of a linked list. 

/*************************************************/ 

II 



Find the end of a linked list by looking for a NULL 

pointer. The linked list structure must contain a 

member called 'succ' for successor which points to 

the next item in the list. 

struct list *eolist() 

struct list *ptr,*p NULL; 

for (ptr 

{ 

ROOT; ptr != NULL; ptr 

p ptr; 
} 

return (p); 

29 - TOOLKITS 

ptr->succ) 

/*************************************************/ 

struct list *startfrom (i) 

int i; 

struct list *ptr,*p 

int j = 0; 

/* Find ith node in list */ 

NULL; 

for (pt=ROOI'; (ptr != NULL) && (j++ != i); pt=Ptr->succ) 

p ptr; 

} 

return (p); 

/*************************************************/ 

Install a new structure on the end of a linked list. 

This function can not insert a structure in the middle 

of a linked list, because it does not take care to 

reconnect pointers in the correct way. 

struct list *install (ptr) 

struct list *thispos, *newstruct(); 



C - A DABHAND GUIDE 

if ((thispos = newstruct()) 

{ 

warning(); 

NULL) 

printf ("DEBUG**: Free memory pool is empty"); 

exit(O); 

if (ROOT = NULL) 

{ 

ROOT thispos; 

ROOT true; 

else 

ptr->succ 

thispos->secs 

thispos->rate 

thispos->succ 

thispos; 

t; 

r; 

NULL; 

return (thispos); 

/*************************************************/ 

Delete from ptr to the end of a linked list. In other 

words, make this structure pointed to be ptr the 

new end of the list. 

struct list *deletetoend (ptr) 

struct list *ptr; 

if (ptr != NULL) 

{ 

deletetoend (ptr->succ); 

II 



29 - TOOLKITS 

releasestruct (ptr); 

return (NULL) ; 

/*************************************************/ 

Obtain memory for a new dynamic structure of type 

'struct list'. 

struct list *newstruct () 

char *malloc(); 

return ((struct list*) malloc(sizeof(struct list))); 

/*************************************************/ 

Free the memory, previously allocated by newstruct() 

which is pointed to by ptr and hand it back to the 

free memory pool where it can be used by other data 

structures, other programs or whatever. 

releasestruct (ptr) 

struct list *ptr; 

if (free ((char *) ptr) != 0) 

printf ("DEBUG [ZO/TktDtStrct] memory release 

faliure\n"); 

/*************************************************/ 

/* Toolkit CONSOLE Output */ 

/*************************************************/ 

• 



C - A DABHAND GillDE 

These functions perform very basic output facilities. 

Most of the functions in this section could also be 

implemented as macros. For example: 

#define clrscrn() 

#define blankline() 

putchar ( '\f') 

printf ("\r \r") 

/*************************************************/ 

Clears the user's screen. 

clrscrn () 

putchar ('\f'); 

/*************************************************/ 

blank line () 

printf ("\r 

Makes the current line on the screen blank by 

printing spaces over it and leaves the cursor at the 

start of the line. There must be enough spaces to 

cover the whole line, but not so many that the line 

spills over onto the next line. 

\ r") ; 

/*************************************************/ 

newline () 

This mimics pressing RETURN. It prints a blank 

line on the screen. 

putchar ('\n'); 

/*************************************************/ 

• 



This function makes a beep, or makes a warning 

signal to the user. 

warning () 

putchar ('\7'); 

29 - TOOLKITS 

/*************************************************/ 

Pause briefly. A very short gap. The limit on x can be 

altered to make the gap longer or shorter. 

pause () 

int x; 

for (x=O; x <= 50000; x += 1); 

/*************************************************/ 

/* TOOLKIT Console Input */ 

/*************************************************/ 

This function is useful when a program user opts to 

finish a section by selecting a 'quit' option . The 

program could verify the quit option by writing the 

following: 

if (wantout(carefully)) 

/* really quit: exit() or return() etc. */ 

If a programmer writes wantout(fast), the function 

simply returns 'true' . The function serves only a 

decorative purpose . Note that this function calls 

another function yes() in this toolkit. 

#define fast false /* parameters for wantout */ 

#define carefully true 

• 



C - A DABHAND GUIDE 

wantout (becareful) 

int becareful; 

/* quit a program section */ 

if (becareful) 

printf ("Really quit? (Y/N)\n"); 

return (yes() ) ; 

return (true); 

/*************************************************/ 

yes () 

Here are some functions which have been used 

extensively during the course of this book. They are 

listed here for completeness, in the 'proper' toolkit. 

/* boolean response Y/N query */ 

while (true) 

switch (getkey ()) 

{ 

case 'y' case 'Y' return (true); 

case 'n' case 'N' return (false); 

/*************************************************/ 

• 

This function, in particular, can be altered from 
system to system. Most micros support a 

'getcharacter' function in which the character value 

is returned immediately, without the user having to 

press RETURN. This is normally called getch and is 

implemented as part of the standard input output 

library . 



29 - TOOLKITS 

char getkey () /* single key press response */ 

/* user must press RETURN */ 

char ch; 

scanf ("%c",&ch); 

skipgarb () ; 

return (ch); 

/*************************************************/ 
This function waits to get an integer from the user, 

which lies between the values a and b (b should be 

greater than a). If the value is not valid, the program 

re-prompts the user with a question mark, until a 

valid value has been found. Note that this function 

calls skipgarb. 

getint (a,b) /* return int between a and b */ 

int a,b; 

int p, i a - 1; 

for (p=O; ((a > i) I I (i > b)); p++) 

{ 

printf ("?"); 

scanf ("%d",&i); 

if (p > 3) 

skipgarb(); 

p = 0; 

} 

skipgarb(); 

return (i); 

/*************************************************/ 

• 



C - A DABHAND GIBDE 

As above, for floating point values. When converting 

this to double or long float types, remember to use 

the '%If' conversion specifier in place of '%f'. 

float getfloat (a,b) /* return float between a and b */ 

float a,b; 

short p; 

float x a - 1.0; 

for (p=O; ((a > x) I I (x > b)); p++) 

{ 

printf ("? "); 

scanf ("%f",&x); 

if (p > 3) 

skipgarb(); 

p = 0; 

} 

skipgarb(); 

return (x) ; 

/*************************************************/ 

Skip garbage up to the end of the current line. 

skipgarb () 

while (getchar() != '\n') 

• 



29 - TOOLICITS 

/*************************************************/ 
/* Toolkit : Complex Arithmetic */ 

/*************************************************/ 

Define the complex structure type. Programmers 

who already know about complex numbers will 

appreciate the relevance of this toolkit. Programmers 

who do not, will never need to worry about them! 

typedef struct 

{ 

long float x,y; 

complex; 

/*************************************************/ 

complex add (a,b) 

complex a,b; 

{ complex z; 

z.x a.x + b.x; 

z.y a.y + b.y; 

return(z); 

/*************************************************/ 

complex subtract (a,b) 

complex a,b; 

complex z; 

z.x a.x - b.x; 

z.y a.y - b.y; 

return (z); 

• 



C - A DABHAND GUIDE 

/*************************************************/ 

complex multiply (a,b) 

complex a,b; 

complex z; 

z.x (a .x * b.x) - (a .y * b.y); 

z.y (a .y * b.x) + (a. x * b.y); 

return (z); 

/*************************************************/ 

complex divide (a,b) 

complex a,b; 

complex z; 

long float denominator; 

denominator= (b.x * b.x + b.y * b.y); 

z.x (a.x * b .x + a.y * b.y)/denominator; 

z.y (b.x * a.y - a.x * b.y)/denominator; 

return (z); 

• 



Example 
Programs 

The aim of this chapter is to provide two substantial 

examples of C, which use the data structures 

described in Chapter 27. 

Example 1. 

Statistical Data Handler 
The first program is a utility which allows the user to 

type sets of floating point data into an editor, and to 

calculate the mean, standard deviation and so on. 

The program is capable of loading and saving the 

data to disc, as well as being able to handle several 

sets of data at once. The editor works in insert or 

overwrite modes. 



C - A DABHAND GUIDE 

II 

The program is menu-driven and its operation 

should be reasonably self-explanatory, so it is 

presented with rather sparse documentation. 

The Editor 
A simple machine-independent editor is provided for 

entering data. The editor first asks the user whether 

the current number of sets of data is to be altered. 

The default value is zero so, when data is typed in 

for the first time, this should be set up, by 

responding Y for 'yes'. Up to 20 independent sets of 

data can be used. This number is set at the start and 

it is held in the memory and saved to disc with data 

files. If the number of sets is reduced at any time, 

the top sets are 'cut off' from the calculations. They 

are not lost forever, provided the number is changed 

back to include them before they are saved to disc, 

as the number of sets is used as an upper bound in a 

for loop: it does not actually alter the memory. 

More sets can be added at any time by making this 

value larger. 

Insert/Overwrite 
A project file can be edited in either insert mode or 

overwrite mode. Files which contain no data can 

only be edited in insert mode. The editor senses this 

and selects the mode automatically. In insert mode 

the user is prompted for values. Type 0.0 in place of 

an entry to get out of this mode. 

In overwrite mode the user is offered each entry in 

turn. If a non-digit character is typed in (such as a . 

(dot), a - (dash) and so on, the value of an entry is 

not altered. However, if a new value is entered, the 

new value will replace the old one. By default, the 

values are offered in turn from one to the final value. 



30 - EXAMPLE PROGRAMS 

But on selecting overwrite mode, the user is 

prompted for a starting value, and the values are 

offered from the starting number to the end. This is 

to avoid the rather tedious process of working 

through all the entries which are not required in a 

system independent way. 

Quitting Sections 
When quitting sections in which the user is 

supposed to enter data, the convention is that typing 

a zero value (0 .0 for a time, 0 in any other instance), 

is a signal to break out of a section. Typing 0 .0 

while editing in insert mode causes the editor to 

quit. 

The Program Listing 
The program includes three library files, which are 

used for the following purposes: 

#include "stdio.h" 

#include "ctype.h" 

#include "math.h" 

standard header file 

contains character ID 

macros 

includes math function 

declarations 

The flow of program logic is most easily described 

by means of a program structure diagram . The 

diagram shows the structure of function calls within 

the program and this can be related to the listing. 

The general scheme of the program is this: 

I) Various flags concerning the data structure are 

cleared. 

2) A menu is printed and the program cycles 

through the options. 

• 



C - A DAB HAND GUIDE 

main() 

LEVEL 0 

• 

quit() 
mean() 

stddeus() 
Analyse () DATA STRUCTURE 

millikan() 

load Save () 

no. of 
load groups () 
Project () CONSOLE INPUT 

Save 
Project () 

edit() 
Over() 

Update 
scrn () 

menu() 
status() 

drflags() which group ( ) 
CONSOLE OUTPUT 

LEVEL 1 LEVEL 2 

Figure 30.1. The structure of ST AT. C 

3) The editor determines the data group to be 

edited, updates the screen with the data in the 

current group and loops through insert or 

overtype editing until the user quits . 

TOOLKITS 



30 - EXAMPLE PROGRAMS 

4) The analysis calls custom functions which scan 

through the data structure calculating the 

relevant quantities. 

5) Various toolkits perform run-of-the-mill 

activities. 

The data structure of this program is an array of 

linked lists. The array provides the roots of several 

independent linked lists: one for each group of data. 

These linked lists are attended to by toolkit routines 

and by special functions such as 'over()'. 

Listing 30.1. Statistical Calculator. 

/*************************************************/ 

I* 
/* Statistical Calculator 

/* 

*/ 

*/ 

*/ 

/*************************************************/ 
/*******************************************/ 
/* Include some library files for linking */ 

/*******************************************/ 

#include "stdio.h" 

#include "ctype.h" 

#include "rnath.h" 

/*************************************************/ 
/** Manifest Constants I Macros I Static Variables **/ 
/*************************************************/ 

Ide fine true 1 

Ide fine false 0 

#define grps 20 /* No grps which can be handled */ 

#define carefully 1 

#define fast 0 

#define not zero 1 

#define endmark -1.1 



C - A DABHAND GillDE 

#define notendmark 0 

#define bignum le300 

int DATSETS = 0; 

short DATATHERE = false; /* list data */ 

char *FSP = " ................... "; /*project 

name */ 

/*************************************************/ 

/** STRUCTURES **/ 

/*************************************************/ 

struct list 

double value; 

struct list *succ; 

} ; 

struct Vlist 

struct list *datptr; 

int datathere; 

Data[grps]; 

/*************************************************/ 

/** LEVEL 0 : Main Program **/ 

/*************************************************/ 

main () 

• 

char get key(); 

clrflags () ; 

while (true) 



30 - EXAMPLE PROGRAMS 

Menu(); 

switch (getkey()) 

case '1' : edit(noofgroups()); 

break; 

case '2' : LoadSave () ; 

break; 

case '3' : Analyse(); 

break; 

case 'q' : if (wantout(carefully)) quit(); 

/*************************************************/ 

/** LEVEL 1 **/ 

/*************************************************/ 

clrflags () 

short i; 

/* Initialize a virtual list */ 

for (i=l; i<=grps; i++); 

Data[i] .datathere = false; 

Data[i] .datptr =NULL; 

} 

/*************************************************/ 

Menu () 

clrscrn(); 

printf ("\nStatistical Calculator Vl.0\n\n\n"); 

• 



C - A DABHAND GUIDE 

printf ("1 

printf ("2 

printf ("3 

Edit Data Files\n\n"); 

Project Files\n\n"); 

Analyse Files\n\n"); 

printf ("q Quit\n\n"); 

printf ("\nEnter Choice and RETURN "); 

/*************************************************/ 

edit (no_grps) 

int no_grps; 

/* Edit a linked list */ 

char s,status(),getkey(); 

int i,stop = false,ctr; 

void saveproject(); 

double over(),t,correct,getfloat(); 

struct list *ptr,*here,*eolist(), 

*install(),*startfrom(); 

while (true) 

II 

i = whichgroup(); 

switch (s = status(i)) 

case 'i' : 

for (here= eolist(i,&ctr); true; ctr++) 

updatescrn (i,s); 

printf("%d:",ctr); 

if ( (t = get float () ) = 0) break; 

here= install (here,t,i); 

printf ("\n\nFile closed\n\n"); 

break; 



30 - EXAMPLE PROGRAMS 

case 'o' : 

for (ptr=startfrom(&ctr,i); 

ptr != NULL; ptr = ptr->succ) 

{ 

if (ctr% 4 == 1) updatescrn (i,s); 

correct= over(ctr++,ptr->value); 

ptr->value = correct; 

break; 

case 's': saveproject(); 

break; 

case 'l': loadproject(); 

break; 

case 'q' : stop wantout(fast); 

if (stop) break; 

/*************************************************/ 

noofgroups () /* Check no. of data groups */ 

char ch,getkey(); 

printf ("Project currently holds %d groups\n\n",DATSETS); 

printf ("Alter groups or Edit? (A/E)"); 

ch= getkey(); 

switch (tolower(ch)) 

• 



C - A DABHAND GUIDE 

case 'a': printf ("\nHow many groups for this file? 

(0 .. %d) \n\n", grps); 

return (DATSETS = getint(O,grps)); 

case 'e' :return (DATSETS); 

/*************************************************/ 

LoadSave () /* Project options */ 

char ch,getkey(); 

clrscrn(); 

printf ("\nCurrent Project %s\n\n\n", FSP); 

printf ("Load new project or Save current one (L/S/Quit) 

?\n\n"); 

ch= getkey(); 

switch (tolower(ch)) 

case 'l' if (sure()) 

DATATHERE loadproject () ; 

break; 

case 's' if (sure()) 

saveproject (); 

case 'q' 

II 



30 - EXAMPLE PROGRAMS 

/*************************************************/ 

Analyse () /* Work out sorce typical quantities */ 

char getkey(); 

double mean(), mn, millikan(); 

int i; 

printf ("Analysis of Data\n\n"); 

for (i = l; i <= DATSETS; i++) 

mn = mean(i); 

printf ("Mean value of group %2d 

stddevs (mn) ; 

%f\n", i,mn) ; 

printf ("Millikan value %d %lg:\n",i,millikan(i)); 

newline(); 

getkey (); 

) 

/*************************************************/ 

quit () /* Quit program & tidy */ 

{ short i; 

struct list *deletetoend(); 

for (i 0; i <= DATSETS; i++) 

deletetoend (Data[i] .datptr); 

II 



C - A DABHAND GUIDE 

exit(O); 

/*************************************************/ 

/* LEVEL 2 */ 

/*************************************************/ 

void saveproject () 

FILE *dfx; 

char *filename(),ch,getkey(); 

struct list *ptr; 

int i; 

if ( (dfx fopen (filename(),"w")) == 0) 

printf ("cannot write to file\nPress a key\n"); 

ch = get key () ; 

return; 

fprintf (dfx,"%ld\n",DATSETS); 

for (i=l; i <= DATSETS; i++) 

for (ptr = Data[i] .datptr; 

ptr != NULL; ptr = ptr->succ) 

fprintf (dfx,"%lf \n",ptr->value); 

fprintf (dfx,"%f\n",endmark); 

fprintf (dfx,"%d\n",Data[i] .datathere); 

while (fclose (dfx) != 0) 

• 



30 - EXAMPLE PROGRAMS 

printf ("Waiting to close"); 

blankline (); 

return; 

/*************************************************/ 

loadproject () 

FILE *dfx; 

/* Load new list & delete old */ 

char *filenarne(),ch,getkey(); 

int r,i; 

double t = 1.0; 

struct list *ptr,*install(),*deletetoend(); 

if ((dfx = fopen(filenarne(),"r")) NULL) 

printf ("File cannot be read\nPress any key\n"); 

ch= getkey(); 

return (0); 

fscanf (dfx," %ld",&DATSETS); 

for (i 1; i <= DATSETS; i++) 

t = notendrnark; 

Data[i] .datptr = deletetoend(Data[i] .datptr); 

Data[i] .datathere =false; 

for (ptr Data[i) .datptr; t != endrnark;) 

fscanf (dfx," %lf",&t); 

if (t != endrnark) 

II 



C - A DABHAND GUIDE 

ptr install (ptr,t,i); 

fscanf (dfx,"%ld",&r); 

Data[i] .datathere = r; 

while (fclose(dfx) != 0) 

printf ("Waiting to close file"); 

blankline(); 

return (true); 

/*************************************************/ 

whichgroup () 

int n O; 

printf ("\n\nEdit account number: "); 

n = getint (0,DATSETS); 

if (n 0) 

printf ("Quit!\n"); 

return (n); 

/*************************************************/ 
char status (i) 

int i; 

char stat; 

• 



30 - EXAMPLE PROGRAMS 

if (i==O) 

{ 

stat 'q' ; 

else 

if (Data[i] .datathere) 

printf ("Insert/Overwrite/Load/Save/Quit?"); 

stat = get key() ; 

stat= tolower(stat); 

else 

stat 'i'; 

return (stat); 

/*************************************************/ 

updatescrn (grp,status) /* Update editor screen */ 

int grp; 

char status; 

int ctr=O; 

struct list *ptr; 

clrscrn (); 

printf ("\nStatistical Editor Vl.O\n\n"); 

printf ("\nThis project file contains %d 

groups.\n",DATSETS); 

• 



C - A DABHAND GIBDE 

for (ptr = Data [g:i:p] .datptr; (ptr != NULL); ptr=ptr->succ) 

{ 

if ((ctr% 3) == 0) newline(); 

printf (" ( %2d) %12g ",ctr+l, (ptr->value)); 

ctr++; 

printf ("\n\nEditing Group %d. Contains %d entries ** 

", grp, ctr) ; 

switch (tolower(status)) 

case 'i' : printf ("INSERT MODE **\n"); break; 

case 'o' : printf ("OVERWRITE MODE **\n"); 

newline(); 

/*************************************************/ 

double over (n,old) 

int n; 

double old; 

double correct 0; 

/* Edit overtype mode */ 

printf ("Entry %-2d: ",n); 

scanf(" %lf",&correct); 

skipgarb(); 

if (correct 0) 

return (old); 

else 

• 



30 - EXAMPLE PROGRAMS 

return(correct); 

/*************************************************/ 

double mean ( i) 

int i; 

sum 

struct list *ptr; 

double sum; 

int num; 

num 0; 

/* find mean average */ 

for (ptr 

{ 

Data[i] .datptr; ptr !=NULL; ptr=ptr->succ) 

sum += ptr->value; 

num ++; 

return (sum/num); 

/*************************************************/ 

stddevs (mean, i) /* find variance/std deviation */ 

double mean; 

int i; 

double sum,num,var; 

struct list *ptr; 

sum num O; 

• 



C - A DABHAND GUIDE 

for (ptr 

{ 

Data[i].datptr; ptr !=NULL; ptr=ptr->succ) 

sum+= (ptr->value - rrean) * (ptr->value - rrean); 

nurn ++; 

var surn/nurn; /* "biased" value */ 

printf ("Variance %d = %f\n",i,var); 

printf ("Std deviation %d = %f\n",i,sqrt(var)); 

/*************************************************/ 

double rnillikan (i) /* srnllest diffnce between 2 data */ 

int i; 

double ternp,record = bignurn; 

struct list *ptrl,*ptr2; 

for (ptrl Data[i] .datptr; ptrl !=NULL; 

ptrl = ptrl->succ) 

for (ptr2=Data[i] .datptr; ptr2 !=ptrl; 

ptr2 = ptr2->succ) 

temp (ptrl->value) - (ptr2->value); 

if (abs(temp) < record) 

record abs(ternp); 



30 - EXAMPLE PROGRAMS 

return (record); 

/*************************************************/ 

/* LEVEL 3 */ 

/*************************************************/ 

char *filename () 

do 

printf ("Enter filename "); 

scanf ("%s",FSP); 

skipgarb(); 

} 

while (strlen(FSP) 0); 

return (FSP); 

/*************************************************/ 

I* Toolkit data structure *I 
/*************************************************/ 

struct list *eolist(i,c) /* Seek end of linked Vlist */ 

int i,*c; 

struct list *ptr,*p 

*c = 1; 

NULL; 

for (ptr Data[i].datptr; ptr !=NULL; ptr 

{ 

++(*c); 

p = ptr; 

ptr->succ) 

• 



C - A DABHAND GlnDE 

return (p); 

/*************************************************/ 

struct list *startfran (ctr,i)/* Find ith node in list*/ 

int *ctr,i; 

struct list *ptr,*p 

int j = 0; 

NULL; 

printf ("Overtype starting from which entry"); 

*ctr= getint(l,99); 

for (ptr=Data[i] .datptr; (ptr !=NULL) && (j++ !=*ctr); 

ptr=ptr->succ) 

p ptr; 

} 

return (p); 

/*************************************************/ 

struct list *install (ptr,t,i) /* install at thispos */ 

struct list *ptr; 

double t; 

int i; 

struct list *thispos, *newstruct(); 

if ( (thispos newstruct()) NULL) 

warning() ; 

II 



30 - EXAMPLE PROGRAMS 

printf ("DEBUG**: Free rrerrory pool is enpty"); 

exit(O); 

if (!Data[i] .datathere) 

Data[i] .datptr = thispos; 

Data[i] .datathere =true; 

else 

ptr->succ thispos; 

thispos->value = t; 

thispos->succ = NULL; 

return (thispos); 

/*************************************************/ 

struct list *deletetoend (ptr) /* RECURSIVE WELL - */ 

/* returns NULL for easy deletion of call ptr */ 

struct list *ptr; 

if (ptr ! = NULL) 

deletetoend (ptr->succ); 

releasestruct (ptr); 

return (NULL); 

/*************************************************/ 



C - A DABHAND GUIDE 

struct list *newstruct ()/*Allocate space for new item*/ 

char *malloc(); 

return ((struct list*) malloc(sizeof(struct list))); 

/*************************************************/ 

releasestruct (ptr) /* release memory back to pool */ 

struct list *ptr; 

if (free ((char *) ptr) != 0) 

printf ("DEBUG [ZO/TktDtStrct] memory release 

faliure\n"); 

/*************************************************/ 

/* Toolkit CONSOLE Output */ 

/*************************************************/ 

clrscrn () 

printf ("\f"); 

/*************************************************/ 

newline () 

printf ("\n"); 

/*************************************************/ 

• 



30 - EXAMPLE PROGRAMS 

blankline () 

printf (" \ r") ; 

/*************************************************/ 

warning () 

putchar( '\7'); 

/*************************************************/ 

/*** Toolkit CONSOLE Input **/ 

/*************************************************/ 

wantout (becareful) 

int becareful; 

if (becareful) 

/* Exit from a section */ 

printf ("Really quit? (Y/N) \n"); 

if (yes()) return (true); else return (false); 

return (true); 

/*************************************************/ 

sure (becareful) /* Are you sure : boolean */ 

int becareful; 

if (becareful) 

• 



C - A DABHAND GUIDE 

printf ("Are you sure? (Y/N)\n"); 

if (yes()) return (true); else return (false); 

return (true) ; 

/*************************************************/ 

yes () /* boolean response Y/N query */ 

while (true) 

switch (getkey()) 

{ 

case 'y' case 'Y' return (true); 

case 'n' case 'N' return (false); 

/*************************************************/ 

char get key () 

char ch; 

scanf (" %c",&ch); 

skipgarb () ; 

return (ch) ; 

/* get single character */ 

/*************************************************/ 

getint (a,b) /* return int between a and b */ 

• 



30 - EXAMPLE PROGRAMS 

int a,b; 

int p, i a - 1; 

for (p=O; ((a > i) 11 (i > b)); p++) 

( 

printf ("?"); 

scanf (" %d", &i); 

if (p > 3) 

( 

skipgarb() ; 

p = 0; 

} 

skipgarb(); 

return (i); 

/*************************************************/ 

double getf loat () /* return long float */ 

double x 0; 

printf ("? "); 

scanf (" %lf",&x); 

skipgarb(); 

return (x) ; 

/*************************************************/ 

skipgarb() /* Skip input garbage corrupting scanf */ 
( 

while (getchar() != '\n'); 

/* end */ 

End of Listing 30.1. Statistical Calculator. 

II 



C - A DAB HAND GUIDE 

LEVELO 

LEVEL 1 

LEVEL2 

LEVEL3 

LEVEL4 

TOOlXITS 

II 

Example 2. Variable Cross 
Referencer 
A variable cross referencer is a utility which produces 

a list of all the identifiers in a C program (variables, 

macros, functions and so on), and lists the line 

numbers of those identifiers within the source file. 

This is sometimes useful for finding errors and for 

spotting variables, functions and macros which are 

never used, since they show up clearly as identifiers 

which have only a single reference. The program is 

listed here, with its line numbers, using the file 

utility written in Chapter 25 and its output (applied 

to itself) , is supplied afterwards for reference . 

Readers should note that the line numbers are 

supplied for convenience. They should not be typed 

in . The structure diagram illustrates the operation of 

the program. 

dtltlhoap() 

TOOUCIT INPllT TOOLKIT DATA STllJCTURE 

Figure 30.2. Structure diagram ofCREF.C. 



30 - EXAMPLE PROGRAMS 

Listing 30.2. Cref.C. 

1 /********************************************************/ 

2 /* 

3 /* C programming utility 

4 /* 

variable referencer 

*I 
*I 
*I 

5 /********************************************************/ 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

/* See notes above */ 

iinclude "stdio.h" 

hnclude "ctype.h" 

idefine true 1 

idefine false 0 

idefine durruny 0 

idef ine maxstr 512 

idefine maxIDsize 32 

idefine WrdTable 33 

int LINECOUNT = 1; /* Contains line no. in file*/ 

char BUFFER[maxIDsize];/* Input BUFFER for IDs *I 
char CH; 

char SPECIALCHAR; 

/* Current input character */ 

/* macro/pointer flag */ 

24 /*********************************************************/ 

25 /* TABLE *I 
26 /*********************************************************/ 

27 

28 char *WORDTABLE [WrdTable] =/* Table of resvd words */ 

29 

30 

31 

32 

33 

34 

35 

"auto" 

"break" 

"case" 

"char" 

"const", 

• 



C - A DABHAND GUIDE 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

"continue", 

"default" , 

"do" 

"double" 

"else" 

"entry" 

"enum" 

"extern" 

"float" 

''for" 

"goto" 

"if" 

"int" 

"long" 

"register", 

"return" 

"short" 

"signed" 

"sizeof" 

"static" 

"struct" 

"switch" 

"typedef" , 

"union" 

"unsigned", 

"void" 

"volatile", 

"while" 

} ; 

66 /********************************************************/ 
67 /** STRUCTURES **/ 

68 / ********************************************************/ 
69 

70 struct heap 

71 

• 



30 - EXAMPLE PROGRAMS 

72 

73 

74 

75 

76 

77 

short num; 

char spec; 

struct heap *next; 

} ; 

78 /*********************************************************/ 

79 

80 struct BinaryTree 

81 

82 

83 char *name; 

84 struct heap *line; 

85 struct BinaryTree *left; 

86 struct BinaryTree *right; 

87 

88 

89 

90 

*tree NULL; 

91 /*********************************************************/ 

92 /* LEVEL 0 : main program *I 

93 /*********************************************************! 

94 

95 main () 

96 

97 FILE *fp; 

98 char *filename(); 

99 struct BinaryTree *CloseDataStruct(); 

100 

101 printf ("\nidentifier Cross Reference V 1. 0\n\n"); 

102 if ( (fp = fopen (filename(), "r")) = NULL) 

103 { 

104 printf ("Can't read file .. Aborted! \n\n"); 

105 exit(O); 

106 

107 CH getc (fp); 

• 



C - A DABHAND GUIDE 

108 

109 while (!feof(fp)) 

110 

111 

112 

113 

114 

SkipBlanks (fp); 

RecordWord (fp); 

115 listIDs (tree) ; 

116 CloseDataStruct(tree); 

117 printf ("\n%d lines in source file\n", LINECOUNT); 

118 

119 

120 /*******************************************************/ 

121 /* LEVEL 1 */ 

122 /*******************************************************/ 

123 

124 

125 

SkipBlanks (fp) / * Skip irrelevant characters */ 

126 FILE *fp; 

127 

128 

129 

130 while ( ! feof (fp) ) 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

• 

if (iscsymf(CH)) 

return (dummy) ; 

else 

ParticularSkip(fp); 



30 - EXAMPLE PROGRAMS 

144 /*******************************************************/ 

145 

146 RecordWord (fp) /* get ID in buffer & tube it to data*/ 

147 

148 FILE *fp; 

149 

150 { int tok; 

151 

152 CopyNextID (fp) ; 

153 

154 

155 

if ( (tok token()) 0) I* if not resved word */ 

15 RecordUserID(isfunction(fp)); 

157 

158 

159 

160 

161 

SPECIALCHAR ' '· , 

162 / ********************************************************/ 

163 

164 

165 

listIDs (p) / * List Binary Tree */ 

166 struct BinaryTree *p; 

167 

168 struct heap *h; 

169 int i = O; 

170 

171 if (p != NULL) 

172 

listIDs (p->left); 

printf ("\n%-20s",p->name); 

for (h p->line; (h !=NULL); h h->next ) 

173 

174 

175 

176 

177 

178 

179 

printf (" %c %-5d",h->spec,h->num); 

if ((++i % 8) == 0) 

• 



C - A DAB HAND GUIDE 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

printf ("\n 

printf ("\n"); 

listIDs (p->right); 

") ; 

190 /*******************************************************/ 

191 

192 struct BinaryTree *CloseDataStruct (p) /* Recursive! */ 

193 

194 struct Bina:ryTree *p; 

195 

196 

197 if (p->left != NULL) 

198 

199 

200 

CloseDataStruct(p->left); 

201 else if (p->right != NULL) 

202 

203 CloseDataStruct(p->right); 

204 

205 

206 deleteheap(p->line); 

207 releasetree (p); 

208 return (NULL) ; 

209 

210 

211 /*******************************************************/ 

212 /* LEVEL 2 */ 

213 /*******************************************************/ 

214 

• 



215 

216 

ParticularSkip (fp) 

217 FILE *fp; 

218 

219 { char c; 

220 

221 switch (CH) 

222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

case 

case 

unterminated ") ; 

' / ' if 

,,,, if 

30 - EXAMPLE PROGRAMS 

/* handle particular characters*/ 

((c = getc(fp)) '*') 

skipcomment (fp); 

else 

CH = c; 

return (durrany); 

break; 

(skiptochar (fp,, '") > maxstr) 

printf ("String too long or 

238 printf ("at line %d\n", LINECOUNT) ; 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

exit (0); 

break; 

case '\'': if (skiptochar (fp,'\'') 1) 

if (CH=='\'') CH getc(fp);; 

break; 

case 'it' skiptochar (fp,' '); 

• 



C - A DABHAND GUIDE 

250 

251 

252 

253 

254 

255 

256 

257 

258 

SPECIALCHAR 

break; 

'*'; 

case '\n': ++LINECOUNT; 

default CH= getc(fp); 

SPECIALCHAR = ' '; 

259 /*******************************************************/ 

260 

261 CopyNextID (fp) / * Put next identifier into BUFFER */ 

262 

263 FILE *fp; 

264 

265 { int i O; 

266 

267 while ( ! feof (fp) && (iscsym (CH))) 

268 

269 

270 

271 

272 

273 

274 

275 

BUFFER[i++) = CH; 

CH = getc (fp); 

BUFFER[i) ' \ 0'; 

276 /*******************************************************/ 

277 

278 

279 

token () 

280 { int i; 

281 

for (i 

/ * Token: pos in WORDTABLE */ 

0; i < WrdTable; i++) 282 

283 

284 

285 

if (strcmp(&(BUFFER[O]),WORDTABLE[i)) 0) 

II 



286 

287 

288 

289 return (0); 

290 

291 

30 - EXAMPLE PROGRAMS 

return (i); 

292 /*******************************************************/ 

293 

294 RecordUserID (fnflag) /* check ID type & install data */ 

295 

296 int fnflag; 

297 

298 { char *strcat (); 

299 struct BinaryTree *install(); 

300 

301 if (fnflag) 

302 

303 

304 

305 

306 else 

307 

308 

309 

310 

311 

strcat (BUFFER,"()"); 

tree install (tree); 

tree install (tree); 

312 / *******************************************************/ 

313 

314 

315 

isfunction (fp) 

316 FILE *fp; 

317 

318 

319 while ( ! feof (fp)) 

320 

321 if (!(CH 

I* returns true if ID is a fn */ 

' ' 11 CH '\n')) 

• 



C - A DABHAND GUIDE 

break; 

else if (CH '\n') 

322 

323 

324 

325 

326 

327 

328 

329 

330 

331 

++LINECOUNT; 

332 

333 

334 

335 

if (CH 

336 else 

337 

CH getc (fp); 

' ( ') 

return (true) ; 

338 return (false); 

339 

340 

341 

342 /*******************************************************/ 

343 

344 deleteheap (h) / * Release back to free memory pool */ 

345 

346 struct heap *h; 

347 

348 { struct heap *temp h; 

349 

350 while (h!=NULL && temp!=NULL) 

351 

352 

353 

354 

355 

356 

357 

• 

temp = h->next; 

releaseheap(h); 

h = temp; 



30 - EXAMPLE PROGRAMS 

358 /*******************************************************/ 

359 /** LEVEL 3 **I 

360 /*******************************************************/ 

361 

362 

363 

skipconment (fp) I* skip to char after conment */ 

364 FILE *fp; 

365 

366 

367 

368 

369 

370 

371 

372 

373 

374 

375 

376 

377 

378 

379 

380 

381 

382 

383 

{ char cs 'x'; 

for (CH= getc(fp); !feof(fp); CH getc (fp)) 

switch (CH) 

cs 

case '\n': ++LINECOUNT; 

break; 

case '/' if (cs '*') 

CH; 

CH = getc (fp) ; 

return (durrmy) ; 

384 /*******************************************************/ 

385 

386 

387 

skiptochar (fp,ch) 

388 FILE *fp; 

389 char ch; 

390 

391 { int c=O; 

392 

/* skip to char after ch */ 

393 while ( ((CH =getc (fp)) ! = ch) && ! feof (fp)) 

• 



C - A DABHAND GUIDE 

394 

395 

396 

397 

398 

399 

400 

401 

if (CH 

c++; 

402 CH = getc (fp); 

403 return (c); 

404 

405 

'\n') 

++LINECOUNT; 

406 /*******************************************************/ 

407 

408 struct BinaryTree *install (p)/* install ID in tree*/ 

409 

410 struct BinaryTree *p; 

411 

412 struct heap *pushonheap(); 

413 struct BinaryTree *newtree(); 

414 char *string in () ; 

415 int pos; 

416 

417 

418 

419 

420 

421 

422 

423 

424 

425 

426 

if (p NULL) 

p = newtree () ; 

p->narne stringin(BUFFER); 

p->line pushonheap (NULL); 

p->left NULL; 

p->right = NULL; 

return (p); 

/* new word */ 

427 if ( (pos = strcrrp (BUFFER, p->narre) ) = 0) /* found word* I 

428 

429 

• 
p->line = pushonheap(p->line); 



430 

431 

432 

return (p); 

30 - EXAMPLE PROGRAMS 

433 

434 

if (pos < 0) I* Trace down list */ 

435 

436 

437 else 

438 

439 

440 

441 

p->left 

p->right 

442 return (p); 

443 

444 

install(p->left); 

install(p->right); 

445 /*******************************************************/ 

446 / * LEVEL 4 */ 

447 /*******************************************************/ 

448 

449 struct heap *pushonheap (h) /* push nxt ln no.to heap 

*/ 

450 

451 struct heap *h; 

452 

453 ( struct heap *hp,*newheap(); 

454 

455 hp = newheap () ; 

456 

457 

hp->num 

hp->spec 

LINECOUNT; 

SPECIALCHAR; 

458 hp->next = h; 

459 

460 return (hp); 

461 

462 

463 /********************************************************/ 

464 I* TOOLKIT file input *I 

• 



C - A DABHAND GUIDE 

465 /*******************************************************/ 

466 

467 

468 

backone (ch, fp) 

469 char ch; 

470 FIIE *fp; 

471 

472 

/* backspace one in file */ 

473 if (ungetc(ch,fp) !=ch) 

474 

475 printf ("\nDebug: Toolkit file input: backone () 

failed\n"); 

476 

477 

478 

479 

exit (0); 

480 /*******************************************************/ 

481 /* TOOLKIT stdin *I 

482 /*******************************************************/ 

483 

484 char *filename () 

485 

486 

487 

{ static char *fsp 

488 do 

"· ................................. , 

489 

490 

491 

492 

493 

494 

printf ("Enter filename of source program: "); 

scanf ("%33s", fsp); 

skipgarb () ; 

while (strlen(fsp) 0); 

495 return (fsp); 

496 

497 

498 /*******************************************************/ 

II 



30 - EXAMPLE PROGRAMS 

499 

500 

501 

skipgarb () /* skip garbage upto end of line */ 

502 

503 while (getchar() != '\n'); 

504 

505 

506 /*******************************************************/ 

507 /* TOOLKIT data structure */ 

508 /*******************************************************/ 

509 

510 char *stringin (array) I* cpy str in arry to ptr loc*/ 

511 

512 char *array; 

513 

514 {char *malloc(),*ptr; 

515 int i; 

516 

517 

518 

519 

ptr = malloc (strlen(array)+l); 

for (i O; array[i) != '\0'; ptr[i) 

ptr[i] '\0'; 

520 return (ptr); 

521 

522 

array[i++)); 

523 /*******************************************************/ 

524 

525 struct heap *newheap () 

526 

527 {char *malloc (); 

528 return ( (struct heap *) malloc (sizeof (struct heap))); 

529 

530 

531 /********************************************************/ 

532 

533 struct BinaryTree *newtree () 

534 

II 



C - A DABHAND GUIDE 

535 { char *malloc () ; 

536 return ( (struct BinaryTree *) malloc (sizeof (struct 

BinaryTree))); 

537 

538 

539 /*******************************************************/ 

540 

541 releaseheap (ptr) 

542 

543 struct heap *ptr; 

544 

545 

546 if (free ((char *) ptr) != 0) 

547 

548 

549 

550 

551 

552 

printf (''T(X)I.KIT datastruct: link release failed\n") ; 

553 /*********************** ********************************/ 

554 

555 releasetree (ptr) 

556 

557 struct BinaryTree *ptr; 

558 

559 

560 if (free ((char *) ptr) != 0) 

561 

562 

563 

564 

565 

566 

567 

568 

II 

printf (''T(X)I.KIT datastruct: link release failed\n") ; 

/ * end */ 

End of Listing 30.2. Cref.C. 



30 - EXAMPLE PROGRAMS 

Output of Cross Referencer 
Identifier Cross Reference V 1.0 

Enter filename of source program: Cref.c 

568 

BUFFER 427 420 303 284 273 269 20 

BinaryTree 557 536 536 533 413 410 408 

299 194 192 166 99 86 85 

82 

CH 402 395 393 380 376 370 368 

368 332 329 325 321 321 270 

269 267 254 245 245 230 221 

133 107 21 

CloseDataStruct() 203 199 192 116 99 

CopyNext ID () 261 152 

FILE 470 388 364 316 263 217 148 

126 97 

LINECOUNT 456 397 372 327 253 238 117 

19 

NULL 423 422 421 417 350 350 208 

201 197 176 171 102 89 

ParticularSkip() 215 139 

RecordUserID () 294 156 

RecordWord () 146 112 

SPECIALCHAR 457 255 250 159 22 

SkipBlanks () 124 111 

WORDTABLE 284 28 

WrdTable 282 28 U7 

array 518 518 517 512 510 

backone () 467 

c 403 399 391 230 224 219 

ch 473 473 469 467 393 389 386 

cs 380 374 366 

deleteheap () 344 206 

dunmy 377 231 135 #14 

exit() 476 239 105 

II 



C - A DAB HAND GUIDE 

false 338 *13 

feof () 393 368 319 267 130 109 

filename() 484 102 98 

fnflag 301 296 294 

fopen () 102 

fp 473 470 467 402 393 393 388 

386 376 368 368 368 364 362 

329 319 316 314 270 267 263 

261 254 249 245 243 235 226 

224 217 215 156 152 148 146 

139 130 126 124 112 111 109 

107 102 97 

free() 560 546 

fsp 495 494 491 486 

getc() 402 393 376 368 368 329 270 

254 245 224 107 

getchar() 503 

h 458 451 449 354 353 352 350 

348 346 344 178 178 176 176 

176 176 168 

heap 543 528 528 525 453 451 449 

412 348 346 168 84 75 72 

hp 460 458 457 456 455 453 

i 519 518 518 518 518 515 286 

284 282 282 282 280 273 269 

265 179 169 

install() 439 435 408 308 304 299 

iscsym () 267 

iscsymf () 133 

isfunction () 314 156 

left 435 435 422 199 197 173 85 

line 429 429 421 206 176 84 

listIDs () 186 173 164 115 

main() 95 

malloc() 536 535 528 527 517 514 

max!Dsize 20 *16 

• 



30 - EXAMPLE PROGRAMS 

maxstr 235 us 
name 427 420 174 83 

newheap() 525 455 453 

newtree() 533 419 413 

next 458 352 176 75 

num 456 178 73 

p 442 439 439 435 435 430 429 

429 427 424 423 422 421 420 

419 417 410 408 207 206 203 

201 199 197 194 192 186 176 

174 173 171 166 164 

pos 433 427 415 

printf () 563 549 490 475 238 237 185 

181 178 174 117 104 101 

ptr 560 557 555 546 543 541 520 

519 518 517 514 

pushonheap () 449 429 421 412 

releaseheap () 541 353 

releasetree () 555 207 

right 439 439 423 203 201 186 86 

scanf () 491 

skipcomment () 362 226 

skipgarb () 500 492 

skiptochar () 386 249 243 235 

spec 457 178 74 

strcat () 303 298 

strcmp () 427 284 

stringin () 510 420 414 

strlen () 517 494 

temp 354 352 350 348 

tok 154 150 

token() 278 154 

tree 308 308 304 304 116 115 89 

true 334 U2 

ungetc () 473 

568 lines in source file 

II 



C - A DABHAND GUIDE 

II 

Comments 
This simplified program could be improved in a 

number of ways. Here are some suggestions for 

improvement: 

The program could determine whether an identifier 

was of type pointer or not and, if so, label the line 

number with a*, eg, *123 342 *1234. 

At present the program only marks macros with a # 

symbol on the line at which they are defined. It 

could be made to mark them at every line, so that 

#undef-ined symbols and variables were clearly 

distinguished . 



m Errors & 
Debugging 

Mistakes! 
Debugging can be a difficult process. A compiler 

manual should give detailed explanations of errors. 

However, in many cases compiler errors are not 

generated because of an error which was present, 

but because the compiler got out of step . Often the 

error messages give a completely misleading 

impression of what has gone wrong. It is useful 

therefore to build up your own list of errors and 

probable causes. The examples in this chapter should 

help beginners get started and perhaps give some 

insight into the way C works. 



C - A DABHAND GUIDE 

• 

Compiler Trappable Errors 
Missing semicolon 

A missing semicolon ( ;) is easily trapped by the 

compiler . Every statement must end with a 

semicolon. A compound statement which is held in 

curly braces seldom needs a semicolon. 

statement; 

but: 

{ 

} ; 

This semicolon is only needed if the curly braces 

enclose a type declaration or an initialiser for static 

array/structure and so on . 

Missing closing brace } 

This erro_r is harder to spot and may lead to a host of 

incorrect errors after the missing brace. Count 

braces carefully. One way to avoid this is to always 

fill braces in before the statements are written inside 

them. So write the following: 

and fill in the statements afterwards. Often this error 

will generate a message like 'unexpected end of file' 

because it is particularly difficult for a compiler to 

diagnose. 

Mistyping upper/lower case 

C distinguishes between small and capital letters. If a 

program fails at the linking stage because it has 

found a reference to a function which had not been 

defined, this is often the cause . 



31 - ERRORS & DEBUGGING 

Missing quote 

If a quote is missed out of a statement containing a 
string then the compiler will usually signal this with 
a message like 'String too long or unterminated' . 

Variable not declared or scope wrong 

This means that a variable has been used which was 

not first declared, or that a variable was outside of its 

sealed capsule . (See Chapter 12 on scope.) 

Missing & in scanf 

See Appendix B. 

Using a function or assignment inside a macro 

If abs (x) is a macro and not a function then the 

following are most probably incorrect: 

abs (function()); 

abs (x =function()); 

Only a single variable can be substituted into a 

macro . This error might generate something like 

'lvalue required'. 

Forgetting to declare a function which is not type 
int 

All functions return values of int by default. If it is 

required that they return another type of variable, 

this must by declared in two places: in the function 

which calls the new function, along with the other 

declarations. For example: 

CallFunction () 

char ch, functionl(), *function2(); 

The function! is type char; function2 is type pointer 

to char. This must also be declared where the 

function is defined: 

• 



C - A DABHAND GUIDE 

• 

char functionl () 

and: 

char *function2() 

This error might result in the message 'type 

mismatch' or 'external variable/function 

type/attribute mismatch'. 

Type mismatch in expressions 

In C all maths operations have to be performed with 

long variables. These are: 

int 

long int 

double 

long float 

The result is also a long type. If you forget this and 

try to use short, C automatically converts it into 

long form. The result cannot therefore be assigned 

to a short type afterwards or the compiler will 

complain that there is a type mismatch. So the 

following is wrong: 

short i,j = 2; 

i = j * 2; 

If a short result is required, the cast operator has to 

be used to cast the long result to be a short one. 

short i,j = 2; 

i = (short) j * 2; 



31 - ERRORS & DEBUGGING 

Errors not Trappable by a 

Compiler 

Run Time Errors 
Confusion of = and == 

A statement such as: 

if (a = 0) 

is valid C , but notice that = is the assignment 

operator and not the equality operator, == . It is legal 

to put an assignment inside the if statement (or any 

other function), and the value of the assignment is 

the value being assigned! So writing the above 

would always give the result zero (which is 'false' in 

C), so the contents of the braces ( ) would never be 

executed . To compare a to zero the correct syntax 

is: 

if (a 0) 

Missing & in scanf 

This error can often be trapped by a compiler, but 

not in all cases . The arguments of the scanf 

statement must be pointers or addresses of variables, 

not the contents of the variables themselves. Thus 

the following is wrong: 

int i; 

char ch; 

scanf (" %c %d",ch,i); 

and should read: 

int i; 

char; 

• 



C - A DABHAND GUIDE 

• 

scanf ("%c %d", &ch, &i); 

Notice, however, that the & is not always needed if 

the identifier in the expression is already a pointer. 

The following is correct: 

int *i; 

char *ch; 

scanf ("%c %d", ch, i); 

Including the & now would be wrong. If this error 

is trapable then it will be something like 'variable is 

not a pointer'. 

Confusing C++ and ++C 

In many cases these two forms are identical. 

However, if they are hidden inside another 

statement, for example: 

array [C++] = O; 

then there is a subtle difference. ++C causes C to be 

incremented by one before the assignment takes 

place, whereas C++ causes C to be incremented by 

one after the assignment has taken place. So if you 

find that a program is out of step by one, this could 

be the cause. 

Unwarranted assumptions about storage of 
arrays/structures 

C stores arrays in rows and, as far as the language is 

concerned, the storage locations are next to one 
another in one place up to the end of the array. In a 

multi-tasking environment this generally isn't true. 

A program will be loaded into one or more areas 

(where ever the operating system can find space), 

and new variable space will be found wherever it is 

available, but this will not generally be in whole 

blocks 'side by side' in the memory. So the 

following sort of construction, which is often used 

in C books, will not work: 



31 - ERRORS & DEBUGGING 

char array[lO]; 

*array = 0; 

*(array+ 1) = 0; 

*(array+ 10) = O; 

and may cause the program to crash . This is because 

(while it is true that the variable 'array' used without 

its square brackets is a pointer to the first element 

of the array) it is not true that the array will 

necessarily be stored in this way. Use: 

char array[lO]; 

array[O] O; 

array[l] = O; 

array[lO] = 0; 

Also when finding a pointer to the third element for 

example, it cannot be assumed that: 

array + 3 

will be the location . Use: 

&(array[3]) 

The same comments apply to structures, with one 

further remark: do not assume that the size of a 

structure is the sum of the sizes of its parts! There 

may be extra data inside for operating system use or 

for implementation reasons, like aligning variables 

with particular addresses for example. 

The number of actual and formal parameters does 

not match 

When passing values to a function, the compiler will 

not spot whether you have the wrong number of 

parameters in a statement - provided they are all of 

the correct type. The values which are assumed for 

missing parameters cannot be guaranteed. They are 

probably garbage and will spoil a program. 

II 



C - A DABHAND GUIDE 

• 

The conversion string in scanf/printf is wrong 

Incorrect 1/0 is can be the result of poorly matched 

conversion strings in 1/0 statements. For example: 

float x; float x; 

should be: 

scanf ("%d",&x); scanf ("%f",&x); 

or even: 

double x; float x; 

should perhaps be : 

scanf (" %f", &x); scanf("%ld",&x); 

Another effect which can occur, if the conversion 

specifier is selected as being long when it the 

variable is really short, is that neighbouring variables 

can receive the scanf values instead! For instance if 

two variables of the same type happen to be stored 

next to each other in the memory: 

short i,j; 

which might look like: 

i j 

and the user tries to read into one with a long int 

value, scanf will store a long int value, which is the 

size of two of these short variables. Suppose the left­

hand box were i and the right-hand box were j, and 

you wanted to input the value of i. Instead of 

getting: 

002345 

i j 



31 - ERRORS & DEBUGGING 

scanf might store: 

0000000000000002345 

as: 

I 000000000 0000002345 I 

i j 

because the value was long. This would mean that 

the number would over-flow out of i into j . In fact j 

might get the correct value, and i would be set to 

zero!! Check the conversion specifiers! 

Accidental confusion of int, short and char 

Often when working with characters, you might also 

want to know their ASCII values. If 

characters/integers are passed as parameters it is easy 

to mistype char for int and so on . The compiler 

probably won't notice this because no conversion is 

needed between int and char. Characters are stored 

by their ASCII values . On the other hand if the 

declaration is wrong: 

function (ch) 

int (ch) ; 

but the character is continually assumed to be a 

character by the program, a crash-worthy routine 

might be the result. 

Arrays out of bounds 

C does not check the limits of the programmers 

arrays. If an array is sized as follows: 

type array [ 5] ; 

• 



C - A DABHAND GIBDE 

• 

and the programmer allows the program to write to 

array[6] or more, C will not complain. However, 

the computer might! In the worst case this could 

cause the program to crash. 

Segmentation Fault (Core dumped) 

This is a UNIX error which means you have written 

data out of allowed bounds - either an array was 

wrongly addressed, or some other memory using 

function has used an illegal area of memory. 'Core' 

is a file which contains debug information from the 

processor. Remove it by typing, 

rm core 

If you have rediculous results, check: have you 

#included<math.h>, declared all functions double 

checked constants (eg. 1.0 not 1). Remember that 

all math functions work in double precision. If you 

get huge numbers, it is probably because an integer 

is being mistaken as a double variable. 

Mathematical Errors 

C does not necessarily signal mathematical errors. A 

program might continue regardless of the fact that a 

mathematical function has failed. (See Chapter 21: 

Special Library Functions and Macros) 

Uncoordinated output using put;get 1/0 

Output which is generated by functions like putchar 

and puts is buffered. This means it will not be 

written to the screen until the buffer is either full, or 

is specifically emptied. This results in strange effects 

such as programs which produce no output until all 

the input is complete (short programs), or 

spontaneous bursts of output at uncoordinated 

intervals. One common cure is to use printf, 

terminated with a new-line '\n' character, which 

flushes the buffers on each write operation. Special 



31 - ERRORS & DEBUGGING 

functions such as getch may also suffer from this 

problem. Again the cure is to write: 

printf ("\n"); 

ch= getch(); 

Global variables and recursion 

Global variables and recursion should not be mixed. 

Most recursive routines work only because they are 

sealed capsules and their contents can never affect 

the outside world . The only time that recursive 

functions should alter global storage is when the 

function concerned operates on a global data 

structure. Consider a recursive function: 

int GLOBAL; 

recursion () 

if (++GLOBAL 0) 

return (0); 

alterGLOBAL();/* another function which alters GLOBAL*/ 

recursion() ; 

This function is treading a fine line between safety 

and digging its own recursive grave . All it would 

take to crash the program, would be the careless use 

of GLOBAL in the function 'alterGLOBAL', and 

the function would never be able to return . The 

stack would fill up the memory and the program 

would plunge down the unending recursive well. 

• 



C - A DABHAND GUIDE 

II 

Tracing Errors 
Locating a problem 

Complex bugs can be difficult to locate. Here are 

some tips for easy fault finding: 

1) Try to use local variables, in preference to global 

ones, for local duties. Never rely on global 

variables for passing messages between functions 

2) Check variable declarations and missing 

parameters 

3) Check that the program has not run out of 

private memory. If it repeatedly crashes for no 

apparent reason, this could be a cause. Make the 

program stack size bigger if possible 

4) Use statements like printf('program is now 

here') to map out the progress of a program, 

and to check that all function calls are made 

correctly 

5) Use statements like 'ch = getchar' to halt a 

program in certain places and to find out the 

exact location where things go wrong 

6) Try 'commenting out' lines of suspect code. In 

other words: put comment markers around lines 

that you would like to eliminate temporarily and 

then re-compile to pinpoint errors. 

7) Check that the compiler disc has not been 

corrupted (make a new copy) - getting 

desperate now. 

8) Try retyping the program, or using a filter which 

strips out any illegal characters which might have 

found their way into a program 

9) Get some sleep! Hope the problem has gone 

away in the morning 



31 - ERRORS & DEBUGGING 

Failing these measures, try to find someone who 

regularly programs in C on the computer system 

concerned. 

Pathological problems 

Problems which defy reasonable explanations are 

referred to as pathological or 'sick'. In most cases 

they will be the result of misconceptions about C 

functions, but occasionally they may be the result of 

compiler bugs, or operating system design 

peculiarities. Consider the following example which 

I encountered while writing the simple example in 

Chapter 25: Files and Devices, subsection 'Low -

level File Handling'. A seemingly innocent macro 

defined by: 

#define clrscrn() putchar('\f'); 

caused the C library functions 'creat' and 'remove' 

to fail in remarkable ways! The problem was that a 

single call to clrscrn at the start of the function 

DelFile, caused both of the library functions in very 

different parts of the program, to make recursing 

function calls function DelFile. The deletion of 

clrscrn cured the problem entirely! 

Filing functions (particularly scant) can result in 

quite unbelievable errors in run-time. If you have 

them in your program and something weird is 

happening - check these first. 

In general, it is worth carefully checking the names 

of all functions within a program to be sure that 

they do not infringe upon library functions. For 

example, read and write are names which everyone 

wishes to use at some point, but they are the names 

of standard library functions, so they may not be 

used. Even capitalising (Read / Write) might not 

work. Beware that special operating system libraries 

• 



C - A DABHAND GUIDE 

II 

have not already reserved these words as library 

commands. 

It is almost impossible to advise about these errors. 

You can only hope to try to eliminate all possibilities 

in homing in on the problem. To misquote Sherlock 

Holmes: 'At the end of the day, when all else fails 

and the manuals are in the waste paper basket, the 

last possibility, however improbable, has to be the 

truth .' 

Porting programs between computers 

Programs written according to the style guidelines 

described in this book should be highly portable. 

Nevertheless, there are almost inevitably problems in 

'porting' programs from one computer to another. 

The most likely area of incompatibility between 

compilers is filing operations, especially scanf. 

Programmers attempting to transfer programs 

between machines are recommended to look at all 

the scanf statements first, and to check all the 

conversion specifiers with a local compiler manual. 

Scanf is capable of producing a full spectrum of 

weird effects which have nothing to do with I/O. 

Here are some common problems to look out for: 

1) Assumptions about the size of data objects, such 

as int and float, can be risky 

2) Check conversion characters in printf and scanf 

as some compilers choose slightly different 

conventions for these 

3) The stack size and available memory is likely to 

vary between systems. This can cause errors at 

run time if a program runs out of space, even 

though there is nothing wrong with the code 



31 - ERRORS & DEBUGGING 

4) Check for functions which rely on the speed of a 

particular computer. For example, pause or wait 

loops (See Chapter 29 : Toolkits). Some 

computers may scarcely notice counting to 

50000, whereas others may labour at it for some 

time! 

5) Check for assumptions made about filenames. 

For example, limited/unlimited size, valid 

characters and so on 

Questions: 
1) Spot the errors in the following: 

2) 

3) 

function (string,i) 

char *string; 

int i; 

while (a < b) 

while (b == 0) 

{ 

printf ("a is negative"); 

struct Name 

int memberl; 

int member2; 

• 



C - A DABHAND GUIDE 

II 



m Advanced 
Features 

Miscellaneous. 

Argument processing and function pointers. 

Making New Commands 

with C 
One of C's greatest attributes is that it is an 

extremely ready language for writing utilities. 

Although utilities take many forms, perhaps the 

most worthwhile kind are those which work like a 

new commands, or an extension of the operating 

environment, taking parameters and performing 

useful duties with files: eg 

copy file.c program.c 

mv file.c mydir 



C - A DABHAND GUIDE 

• 

How are these commands made? The answer lies in 

the function main(), which up to this point we have 

treated as simply the starting point of a program. In 

fact that is not entirely true. 

The real starting point of a program is a function 

called _main() (underscore main()). This is the 

function which the operating system calls first of all. 

It is normally treated as part of the operating 

system's link to C, so it is not often mentioned as 

part of the language. 

_main() and main() 
_main() is written by the designers of the system you 

are working on and so you never need to write this 

function yourself; nor do you often want to know 

that it is there! That is why it is usually ignored . 

What _main() does is usually irrelevant. The only 

thing that one need care about is that it finishes up 

by calling the function main() . One of the things 

which _main() does, however, is to decompose the 

command line which executed the C program it 

begins. _main() makes a note of how many words 

(characters separated by spaces) were typed on the 

command line and records each word in an array. 

It then passes two parameters to main() . They are 

called 

int argc - the number of words on the 

command line 

char *argv[]- an array of pointers to the 

words. 

If you wish to read these parameters into your C 

program, then they must be declared in the usual 

way. The form of main() becomes: 

main (argc,argv) 



32-ADVANCEDFEA1URES 

int argc; 

char *argv(]; 

argv is an array of strings. Since argc is the number 

of strings recorded, the elements of argv are 

a rgv [ 0 ] , a rgv [ 1 ] . . . a rgv [a rgc -1 ] 

The first string recorded ( argv[ 0]) is the actual 

command which was typed to execute the program 

and the entries after that are whatever words 

followed . For example, the command line 

program . x wordl -a 25 

would result in the values: 

argc = 4 

*argv [ 0) 

*argv[l] 

*argv[2] 

*argv[3] 

"program.x" 

"wordl" 

"-a" 

"25" 

These values can be manipulated by programs to 

whatever effect is required . Here's a simple example 

of how you might make a command which strips out 

control characters (non printable characters) from a 

textfile . Imagine that the command is to have the 

syntax: 

strip sourcef ile destination 

Its function is to read in 'sourcefile' and send the 

output (stripped of control characters) to 

'destinationfile'. 

The code could be written like this . 

• 



C - A DABHAND GtnDE 

/*************************************************/ 

/* 

/* STRIP.C 

/* 

Removes non-printable characters 

*/ 

*I 
*/ 

/*************************************************/ 

#include <stdio.h> 

#include <ctype.h> 

#define true 1 

#define false 0 

/*************************************************/ 

main (argc,argv) 

int argc; 

char *argv[]; 

{ char *inputfile= *outputf ile \\\\. , 

printf ("STRIP.C : Unix compatible utility.\n"); 

printf ("(Strip non printable characters from 

file) \n\n"); 

if (argc != 3) /* If other than 2 arguments, error!*/ 

ShowSyntax(); 

return(O); 

inputfile = argv[l]; /*Copy the I/O filenames*/ 

outputfile = argv[2]; 

printf("Strip <%s> and store in <%s>\n"); 

printf("(Y to confirm): ",inputfile,outputfile); 

• 



32-ADVANCEDFEATURES 

if (yes()) 

{ 

ProcessFile(inputfile,outputfile); 

else 

printf("Request cancelled. No action taken.\n\n"); 

/*************************************************/ 

ProcessFile (inputfile,outputfile) 

char *inputfile,*outputfile; 

FILE *fin, *fout; 

char ch; 

if ((fin fopen(inputfile,"r")) ==NULL) 

printf ("Can't open file %s for reading\n",inputfile); 

return (0); 

if ( (fout fopen(outputfile,"w")) 

printf ("Can't write 

%s ! \nAborted. \n", outputfile); 

fclose (fin); 

return (0); 

while (!feof(fin)) 

ch getc(fin); 

to 

NULL) 

output file 

• 



C - A DABHAND GUIDE 

if (isalnum(ch) I I ispunct (ch) I I isspace (ch)) 

fprintf (fout,"%c",ch); 

printf ("Done\n"); 

fclose (fout); 

fclose (fin); 

/*************************************************/ 

ShowSyntax () 

printf("SYNTAX 

} 

strip <from-file> <to-file>\n\n"); 

/*************************************************/ 

/* TOOLS */ 

/*************************************************/ 

/* Copy the code from the toolkits for the 

following functions here! 

char *filename() 

yes () 

char get key () 

skipgarb() */ 

To finish things off and install strip.c as a command, it must be 

compiled: this results in a file called 'strip.x' (or a.out on a UNIX 

system). Next it is renamed just as 'strip' to get rid of the '.x' extension 

• 



32 - ADVANCED FEATURES 

which is irrelevant. With that, the command is ready 

and should function like any other operating system 

utility. 

Altering _main 
Although _main() is written for you, that does not 

mean that it cannot be altered. The system's default 

_main() function can be overridden simply by 

writing your own function, as part of a program and 

compiling it normally. 

Normally, this is to be advised against, but in some 

cases might be necessary. One example which comes 

to mind is particular the AmigaDOS system. When a 

program is run under the Workbench window 

environment, AmigaDOS automatically opens a 

small text window for the output file 'stdout'. If 

your program opens its own window, this can be 

very annoying. The only way to eliminate it is to edit 

the _main() file, where this code is incorported. 

Pointers To Functions 
The second feature we shall consider in this chapter 

is pointers which point to functions, as opposed to 

variables. 

This is an advanced feature, so it has been left 

deliberately until last. The idea behind pointers to 

functions is that you can pass a function as a 

parameter to another function! This seems a slightly 

bizarre notion at first, but in fact it makes perfect 

sense . 

Pointers to functions enable you to tell any function 

which 'sub-function' it should use to do its job. 

That means that you can plug in a new function in 

place of an old one just by passing a different 

• 



C - A DABHAND GUIDE 

II 

parameter to the function. In machine code circles 

this is usually called 'indirection' or 'vectoring'. 

Instead of writing a function explicitly, a pointer (or 

vector which points) to a function is used. That 

pointer, or vector, can be changed without having 

to edit and recompile the program. It works like 

this . 

Recall that, in chapter 19 on arrays, a pointer to the 

start of an array could be found by using its name 

directly, without the square brackets ' []'. For 

functions, the name of the function without the 

round brackets ' ()' works as a pointer to the start of 

the function . So to pass a pointer to ' functionX()' to 

' function¥()', you would type : 

functionY (functionX); 

If you try this, as it stands however, a stream of 

compilation errors will result. The reason is that you 

must also explicitly declare the functions to the 

compiler so that it knows exactly that you mean a 

function by 'functionX' and not a variable with the 

same name. This is done by writing, at the head of 

function¥: 

int functionX(); 

If your function returns a different type then you 

declare it as such. In the declaration of functionY, 

functionX must be declared as a pointer to a 

function . Not only this, but specifically a pointer to 

a function which returns a value of type 'int'. This is 

done with the round brackets. Suppose, the 

receiving (formal) parameter is ' a': 

functionY (a) 

int (*a) (); 



32-ADVANCEDFEATURES 

declares 'a' to be a pointer to a function returning 

type int. Similarly, if you want to declare a pointer to 

a function called fnptr , for general use, you declare 

it using the statement: 

typename ( *fnptr) () ; 

Calling a Function by 
Pointer 
Having defined a number of pointers, one then 

needs to be able to actually invoke the functions 

which are pointed to by the pointers. The syntax for 

this is: 

variable = ( *fnptr) (parameters ... ) ; 

Suppose we have a function which accepts an integer 

and returns a character: 

int i; 

char ch, function(); 

Normally this function is called by the syntax: 

ch= function(i); 

The same thing can be achieved with pointers. First 

we make a pointer to the function: 

char function(); 

char (*fnptr) (); 

fnptr = function; 

Then we call the function with 

ch = ( *fnptr) (i); 

Below is a simple example program which 

demonstrates the use of function pointers. It offers 

the user a choice of two programs for printing out a 

• 



C - A DABHAND GUIDE 

text file . One of the functions is putch() which 

simply copies the file unaltered to the console. The 

other function is called words() . This prints each 

new word on a new line. The function returns a 

nominal value just to make the point that it is 

allowed to do so. The value may be discarded 

though, as with any function. 

Example 

/*************************************************/ 

/* 

/* Pointers to Functions 

/* 

*/ 

*/ 

*/ 

/*************************************************/ 

#include <stdio.h> 

main () 

char ch; 

int putch(),words(); 

int (*functionptr) (); 

printf("View a file on screen\n\n"); 

printf("Select an output routine:\n\n"); 

printf("l. putchar()\n"); 

printf("2. words()\n\n"); 

ch = getchar () ; 

switch (ch) 

case 'l' functionptr 

break; 
put ch; 



32 - ADVANCED FEATURES 

case '2' 

default 

functionptr 

break; 

words; 

printf("Cancelled\n\n"); 

exit (0); 

viewfile (functionptr); 

/*************************************************/ 

viewfile (fnptr) 

int ( *fnptr) () ; 

char ch; 

char *filename(); 

FILE *fin; 

int pos = 0; 

if ((fin fopen (filename(), "r")) 

printf("Can't open file!\n"); 

exit(O); 

while (!feof(fin)) 

ch getc(fin); 

NULL) 

pos (*fnptr) (ch); /*Function call using pointer*/ 

printf ("\End: last cursor position was %d\n", pos); 

• 



C - A DABHAND GUIDE 

/*************************************************/ 

putch (ch) 

char ch; 

fputc(ch,stdout) 

/*************************************************/ 

words (ch) 

char ch; 

( static int pos O; 

if (ch 11 ch 

printf ("\n"); 

pos = O; 

else 

printf ("%c",ch); 

pos++; 

return(pos); 

'\n, ) 

/*************************************************/ 

/* Toolkit */ 

/*************************************************/ 

• 



32-ADVANCEDFEATURES 

skipgarb () 

while (getchar() != '\n') 

/**********************************************/ 

char *filename() 

{ static char name[24]; 

do 

printf ("\n\nEnter filename: "); 

scanf (" %24s", name); 

skipgarb () ; 

while (strlen (name) 0); 

return(name); 

Beware 

A pointer to a function is an automatic (local) 

variable. Local variables are never initialized by the 

compiler, so their result is garbage. If you try to 

execute the following code 

main() 

{ int ( *fnptr) () ; 

(*fnptr) (); 

• 



C - A DABHAND GUIDE 

• 

you will quickly come to grief, either crashing your 

machine or the system will stop you. Calling a non­

existent function at some random address in the 

memory is nonsense. Make sure that your pointers 

are assigned before they are called . 



m I 

Summary of ·c 

Reserved Words 
auto storage class specifier (declaration) 

break statement (escape from switch or loop) 

case option prefix within switch statement 

char type name 

continue statement (branch to start of next loop) 

default option in switch statement 

do statement 

double type name 

else statement 

entry (reserved for the future use) 

extern storage class specifier 

float typename 

for statement 

goto go to label 

if statement 



C -A DABHAND GUIDE 

• 

int 

long 

register 

return 

short 

size of 

typename 

typename 

storage class specifier 

functional statement 

typename 

compile time operator (see Chapter 27: 

Structures) 

static storage class specifier 

struct partial typename 

s\Vitch statement 

typedef statement 

umon partial typename 

unsigned typename 

while statement 

Also in some implementations: 

enum partial typename: ordinal types only 

void typename 

const storage class specifier (no storage allocated) 

signed typename 

volatile storage class specifier 

Preprocessor Directives 
#include 

#define 

#undef 

#if 

#ifdef 

#ifndef 

#else 

#endif 

#line 

#error 

include file for linking 

define a pre-processor symbol/macro 

un-define a previously defined symbol 

test for conditional compilation 

test for conditional compilation 

test for conditional compilation 

test for conditional compilation 

test for conditional compilation 

debug tool 

debug tool 



Header Files and Libraries 
Header files contain macro definitions, type 

definitions and variable/function declarations which 

are used in connection with standard libraries. They 

supplement the object code libraries which are 

linked at compile time for standard library functions . 

Some library facilities are not available unless header 

files are included. Typical names for header files are: 

stdio .h 

ctype.h 

math .h 

dos.h 

Constants 
Integer 

Octal 

Hexadecimal 

Explicit long 

Character 

Float 

Strings 

characters zero to nine only 

Prefix 0 (zero) chars zero to seven 

only 

Prefix Ox (zero ex) chars a to f, A 

to F, zero to nine 

Integer/octal or hexadecimal types 

can be declared long by writing L 

immediately after the constant 

declared in single quotes: 'x' '\n' 

Characters 0 ... 0 and one '.' May 

also use scientific notation 

exponents with e or E preceding 

them: 2.14El2 3.2e-2 for example 

String constants are written in 

double quotes . For example "this 

is a string" and have type pointer 

to character 

33 - SUMMARY OF C 

• 



C - A DABHAND GUIDE 

• 

Primitive Data Types 
char 

int 

short int 

long int 

float 

long float 

double 

void 

holds any character 

integer type 

integer no larger than int 

integer no smaller than int 

floating point (real number) 

double precision float 

double precision float 

holds no value, uses no storage 

(except as a pointer) 

Storage Classes 
auto 

con st 

extern 

static 

register 

volatile 

local variable (redundant keyword) 

no variable allocated, value doesn't 

change 

variable is defined in another file 

value is preserved between function 

calls 

stored in a register, if possible 

value can be changed by agents 

outside the program 

Identifiers 
Idenitifiers may contain the characters: 

0 to 9 

A toZ 

a to z 

the underscore character ( _ ) 



Identifiers may not begin with a number. The 

compiler assumes that an object beginning with a 

number is a number. 

Statements 
A single statement is any valid string in C which 

ends with a semi-colon. 

For example: 

a = 6; 

printf ("I love C because ... "); 

A compound statement is any number of single 

statements grouped together in curly braces. The 

curly braces do not end with a semi colon and stand 

in place of a single statement. Any pair of curly 

braces may contain local declarations after the 

opening brace. For example: 

a = 6; 

int a; 

a; 

printf ("I love C because ... "); 

Summary of Operators and 
Precedence 
The highest priority operators are listed first: 

Operator Operation Evaluated 

() parentheses left to right 

[] square brackets left to right 

++ increment right to left 

33 - SUMMARY OF C 

• 



C - A DABHAND GUIDE 

Operator Operation Evaluated 

decrement right to left 

(type) cast operator right to left 

* the contents of right to left 

& the address of right to left 

unary minus right to left 

one's complement right to left 

logical NOT right to left 

* multiply left to right 

I divide left to right 

% remainder (MOD) left to right 

+ add left to right 

subtract left to right 

>> shift right left to right 

<< shift left left to right 

> is greater than left to right 

>= greater than/equal to left to right 

<= less than or equal to left to right 

< less than left to right 

is equal to left to right 

!= is not equal to left to right 

& bitwise AND left to right 
A bitwise exclusive OR left to right 

bitwise inclusive OR left to right 

&& logical AND left to right 

II logical OR left to right 

assign right to left 

+= add assign right to left 

subtract assign right to left 

* multiply assign right to left 

I= divide assign right to left 

%= remainder assign right to left 

>>= right shift assign right to left 

<<= left shift assign right to left 

&= AND assign right to left 

" exclusive OR assign right to left 

II 
I= inclusive OR assign right to left 



Character Utilities 
Function/Macro Description 

Parameters are characters: 

char ch; 

isalpha( ch) 

isupper( ch) 

islower( ch) 

isdigi t( ch) 

isxdigit( ch) 

isspace( ch) 

ispunct( ch) 

isalnum( ch) 

isprint(ch) 

isgraph(ch) 

iscntrl(ch) 

isascii( ch) 

iscsym(ch) 

to upper( ch) 

to lower( ch) 

toascii( ch) 

is alphabetic a to z, A to Z 

is upper case 

is lower case 

is in the range zero to nine 

is zero to nine, a to for A to F 

is white space character (space/new 

line/tab) 

is punctuation or symbolic 

is alphanumeric (alphabetic or 

number) 

is printable on the screen (and 

space) 

if the character is printable (not 

space) 

is a control character (not 

printable) 

is in the range zero to 127 

is a valid character for a C identifier 

converts character to upper case 

converts character to lower case 

converts character to ASCII (masks 

off top bit) 

Special Control Characters 
Control characters are invisible on the screen. They 

have special purposes usually to do with cursor 

movement and are written into an ordinary string or 

character by typing a backslash character (\), 

followed by some other character. These characters 

are listed below. 

33 - SUMMARY OF C 

• 



C - A DABHAND GUIDE 

• 

\b backspace BS 

\f form feed FF (also clear screen) 

\n new line NL (like pressing RETURN) 

\r carriage return CR (cursor to start of 

line) 

\t horiwntal tab HT 

\v vertical tab 

\" double quote 

\' single quote character(') 

\\ backslash character (\) 

\ddd character ddd where ddd is an ASCII 

code given in octal or base eight. (See 

Appendix C) 

\xdd character dd where dd is a hexadecimal 

number formed from two characters. 

(See Appendix C) 

Input/Output Functions 
printf formatted printing 

scanf formatted input analysis 

getchar get one character from stdin file buffer 

putchar put one charcter in stdout file buffer 

gets get a string from stdin 

puts put a string in stdout 

fprintf formatted printing to general files 

fscanf formatted input from general files 

fgets get a string from a file 

fputs put a string in a file 

fopen open/create a file for high-level access 

fclose close a file opened by fopen 

getc get one character from a file (macro?) 

ungetc undo last get operation 

putc put a character to a file (macro?) 

fgetc get a character from a file (function) 

fputc put a character from a file (function) 

feof end of file . Returns true or false 



fread read a block of characters 

fwrite write a block of characters 

ft ell returns file position 

fseek finds a file position 

rewind moves file position to the start of file 

ffiush empties file buffers 

open open a file for low-level use 

close close a file opened with open 

er eat create a new file 

read read a block of untranslated bytes 

write write a block of untranslated bytes 

rename rename a file 

unlink delete a file 

remove delete a file 

lseek find file position 

printf Conversion Specifiers 
d signed denary integer 

u unsigned denary integer 

x hexadecimal integer 

0 octal integer 

s string 

c single character 

f fixed decimal floating point 

e scientific notation floating point 

g use for e, whichever is shorter 

The letter 'I' (el) can be prefixed before these for 

long types. 

scanf Conversion Specifers 
The conversion characters for scanf are not identical 

to those for printf. 

33 - SUMMARY OF C 

• 



C - A DABHAND GUIDE 

• 

d denary integer (int or long int) 

Id long decimal integer 

x hexadecimal integer 

0 octal integer 

h short integer 

f float type 

If long float or double 

e float type 

le double 

c single character 

s character string 

Maths Library 
These functions require double parameters and 

return double values unless otherwise stated . 

Function 

abs(x) 

fabs(x) 

ceil(x) 

floor(x) 

exp(x) 

log(x) 

loglO(x) 

pow(x,y) 

sqrt(x) 

sin(x) 

cos(x) 

tan(x) 

asin(x) 

Description 

return absolute (unsigned) value. 

(Macro) 

return absolute (unsigned) value. 

(Function) 

rounds up a 'double' variable 

rounds down (truncates) a 'double' 

variable. 

find exponent 

find natural logarithm 

find logarithm to base 10 

raise x to the power y 

square root 

sine of ( x in radians) 

cosine of ( x in radians) 

tangent of (x in radians) 

inverse sine of x in radians 



Function 

acos(x) 

atan(x) 

atan2(x,y) 

sinh(x) 

cosh(x) 

tanh(x) 

goto 

Description 

inverse cosine of x in radians 

inverse tangent of x in radians 

inverse tangent of x/y in radians 

hyperbolic sine 

hyperbolic cosine 

hyperbolic tangent 

This word is redundant in C and encourages poor 

programming style. For this reason it has been 

ignored in this book. For completeness, and for 

those who insist on using it (may their programs 

recover gracefully!), the form of the goto statement 

is as follows: 

goto label; 

'label' is an identifier which occurs somewhere else 

in the given function and is defined as a label by 

using the colon: 

label : printf ("Ugh! You used a goto!"); 

For completely crazed programmers, many 

implementations of C provide program directives 

called 'longjump' for jumping across stack levels -

out of one function, into another! Do yourself a 

favour; forget them. 

33 - SUMMARY OF C 

• 



C - A DABHAND GUIDE 

• 



m , The Amiga 

C is the natural language to use for programming 

the Commodore Amiga. The Amiga reference 

manuals, and much of the software written for the 

Amiga, use C as the basic language of the machine. 

This is an appropriate choice of language for what is 

a particularly complicated operating system. Amiga 

C compilers make heavy use of struct type variables 

for building window displays and the linked list is 

the fundamental data structure used by the 

operating system. 

System Peculiarities 
The Commodore Amiga has two distinctive features. 

First, it multi-tasks - the system can run several 

programs at the same time, quite independently of 

one another. The second feature is a very deep-

rooted windowing system which allows users to take ----.... 



C - A DABHAND GUIDE 

II 

full advantage of its multi-tasking capabilities and 

provides the programmer with a very powerful 

interface which is unlike any other, at the time of 

writing. 

The Amiga's operating system (called Amiga-DOS), 

and the high-level user interface (called Intuition), 

present some peculiarities to C programmers. These 

peculiarites serve to place some minor restrictions on 

the input/output operations which can be 

controlled by the standard input/output library. 

The difficulties are not insurmountable, but they are 

not easily overcome either. 

The most obvious restriction is due to the nature of 

the input/output system used by the Amiga. The 

operating system makes it almost impossible to 

receive keyboard data immediately the keys are 

pressed using standard library functions. Functions 

such as getch which are sometimes provided in 

libraries are not supported by the Amiga. The user 

must invariably press RETURN before any key 

presses are acknowledged by a program. This 

difficulty is quite ingrained, unless the programmer 

is willing to undertake some advanced device­

handling quite beyond the scope of this book. 

The second restriction concerns assumptions about 

the way memory is stored in the machine . As the 

Amiga can run several programs simultaneously, no 

one program has sole rights to the memory and 

when a memory request is put in by a program, the 

Amiga will find memory wherever it can get it. This 

may not be in solid, unbroken pieces, but scattered 

all over the memory. This information is vital to 

programmers who intend to use pointers for 

accessing arrays and strings, as the normal rule about 



arrays being stored row-wise in a solid block, will 

not necessarily apply. 

A final remark. The Amiga will not tolerate sloppy 

programming. Do not expect to be able to get away 

with short-cuts and software 'tricks', which might 

work on simpler computers. A high standard of 

discipline is needed to make programs run smoothly. 

This is no problem, if programmers keep to the 

guidelines noted in this book and in the Amiga 

reference manuals. 

Running C in the CLI 
In order to be able to write programs effectively, the 

user has to be able to type commands into a CU 

(Command Line Interpreter) . This is a program 

which interprets a command language, as discussed 

in Chapter Four and provides the user with a 

relatively low-level interface to the computer. This is 

essential for programming, as all the programmers 

tools exist at this level. Since the Commodore 

Amiga is normally set up to run 'Workbench', whose 

sole purpose is to eliminate this kind of needless 

typing in application programs, programmer's must 

secure themselves a CU window, or preferably two, 

for programming with . The Amiga can be prevented 

from starting up the Workbench program by 

altering the start-up file in directory 's' of the 

workbench . The simplest way to do this is to press: 

CTRL D 

as the Amiga starts up (when the window called 

'AmigaDOS' first appears) . This prevents 

Workbench from being loaded. The start-up file can 

then be altered by typing: 

ed s/startup-sequence 

34 - THE AMIGA 

II 



C - A DABHAND GUIDE 

• 

Delete the 'LoadWb' and 'endcli' programs and 

replace them with 'newcli'. This leaves two CL! 

windows on the screen for programming in. It is 

useful to have two CLis so that when one window is 

busy, commands can still be entered in the other. 

These CL! windows allow the user to type in the 

compiler commands: 

execute cc program 

for instance. Other useful commands are: 

dir to find out what is on the disc 

ed <filename> to invoke the screen editor 

copy <> to <> to copy one file to another 

The full list of relevant commands is to be found in 

the elusive AmigaDOS documentation. 

Special Features of the 
Amiga 
The Amiga operating system is more like a 

mainframe operating system than a micro operating 

system. It is geared to the concept of multi-tasking, 

and so its operation is highly 'intelligent', and can 

interrupt programs before they go seriously wrong, 

know immediately when a disc is inserted into the 

machine, or is removed, work the mouse even when 

no mouse programs are loaded and so on. The list of 

capabilities is almost endless. 

The mouse is a integral part of the Amiga system, 

even when Workbench is not loaded. It allows the 

user to re-size and move windows as well as push 

them behind others. More importantly, it allows the 

user to select the currently active window as far as 

keyboard input is concerned. This concept is unique 

to multi-tasking systems - which of the many 



programs running on the screen at one time is to 

recieve the data from the keyboard? It would not 

make sense for all programs to receive it at the same 

time. The user selects the current input route by 

clicking the mouse in the chosen window. 

Programmers who want to do more than this with 

the mouse and windows must use Intuition, the 

Amiga windowing system, which is quite beyond the 

scope of this text. However, there is an example next 

about using graphics windows. 

As a final word, programmers can rest assured that C 

allows them access to all the facilities which the 

machine offers. 

Resources 
The Amiga treats most of its hardware facilities as 

'pseudo-devices'. A pseudo-device is a part of the 

operating system which relays information to a real 

device, after performing some extra service. Facilities 

such as windows, sound, the printer, serial and 

parallel ports are all represented as pseudo-devices 

on the Amiga. Most of those devices have 'pseudo­

device names' - filenames for accessing those devices 

as C input/output files. The complete filename 

strings for the Amiga devices are: 

'DFn:' Disc file (drive) n, eg: "DFl:","DFO:" 

'PRT:' The printer device (controlled by 

Preferences) 

'SER:' The serial (port) device 

'PAR:' The parallel (port) device 

'RAM:' The RAM disc (silicon disc) 

'RAW:' A kind of window for passing 

untranslated I/O 

'CON:' A console window 

34 - THE AMIGA 

II 



C - A DABHAND GIBDE 

• 

These objects can be opened as files with the fopen 

function, in order to send, receive or exchange data 

with the appropriate device . All the data is passed 

through Amiga-DOS. An example program below 

shows how this can be done. Here are some notes 

on each device. 

PRT: 
The printer device is a pseudo-device which is 

controlled by Preferences (the option configuration 

program on Workbench) . The printer may, in fact, 

be connected either to the parallel port or serial port 

- Preferences directs the information according to 

what the user has selected. If a program opens the 

file called 'PRT:', it opts to have its output 

channelled through Preferences, to either the serial 

device or to the parallel device . The program list.c in 

Chapter 25 is written for the Amiga in its default 

state. The printer is opened up for writing by the 

following: 

FILE *fout; 

fout = fopen ("PRT:","w"); 

PAR: and SER: 
PAR: and SER: are filenames for the raw serial and 

parallel ports. As the printer must be connected to 

one of these, a program could opt to write directly 

to the devices in order to access the printer, instead 

of writing to the printer device 'PRT:'. If this is 

done, no translation or configuration would be 

performed by the Preferences program. Instead 

SER: and PAR: can be used to write data to other 

items connected to those ports at the default rates. 

The default serial rate in 9600 baud . Listing 33 .1 



34 - THE AMIGA 

shows how the Amiga could pass a text file to its 

serial port, perhaps to transfer to another machine. 

Listing 33.1. Serial port demo. 

/*************************************************/ 

/* 

/* Serial Port Demo 

/* 

*/ 

*/ 

*/ 

/*************************************************/ 

/* Copy *fin to *fout character by character */ 

#include "stdio.h" 

#include "ctype.h" 

/******************************************** *****/ 

main () /* Copy ASCII file to SER: */ 

FILE *fin,*fout; 

char *filename(),ch; 

printf ("\nDumb Serial Transfer Vl.0\n\n"); 

if ((fin fopen (filename(), "r")) NULL) 

printf ("File cannot be read\n"); 

exit (0); 

if ( (fout fopen("SER:","w")) NULL) 

do 

printf ("Can't Open serial port\n"); 

exit (0); 

• 



C - A DABHAND GUIDE 

fscanf (fin,"%c",&ch); 

if (isascii(ch)) 

fprintf (fout,"%c",ch); 

printf ("%c",ch); 

while (!feof(fin)); 

exit(O); 

/*************************************************/ 

char *filename () 
II• { static char *f sp .................... , 

do 

printf ("Enter filename "); 

scanf (" %s", fsp); 

skipgarb(); 

while (strlen(fsp) 0); 

return (fsp); 

/*************************************************/ 

skipgarb () /* Skip Garbage corrupting scanf */ 

while (getchar() != '\n'); 

• 



CON: and RAW: 
These two files are both ways of opening windows 

for text input and output. They take parameters for 

the size and position of windows: 

CON:x/y/width/height/name 

RAW:x/y/width/height/name 

A CON: window receives translated character data. 

A RAW: window receives untranslated key number 

data, as the keys are pressed . Some considerable 

background knowledge is needed to operate these 

files fully, which is beyond the capacity of this book. 

Listing 33.2. CON: Window demo. 

34 - THE AMIGA 

/*************************************************/ 

/* 

/* CON: window demo 

/* 

*/ 
*/ 

*/ 

/*************************************************/ 

#include <stdio.h> 

/*************************************************/ 

main () 

{ FILE *fp; 

char ch; 

printf ("Opening CON:0/0/200/200/Demo\n"); 

if ( (fp = fopen ("CON: 0/0/200/200/Demo", "r")) == NULL) 

{ 

printf ("Can't open CON: window"); 

while ((ch=getc(fp)) != 'Q') /* echo chars back */ 

printf(" %c",ch); 

/* end */ 

• 



C - A DABHAND GIBDE 

• 

Graphics 
The Amiga is loaded with facilities for drawing or 

rendering graphics. All graphics are based upon the 

idea that the 'piece of paper' on the Amiga is the 

'window'. Amiga windows are unlike windows on 

other computers, as they multi-task, but this is not 

all. The Amiga can also create multiple screens. 

Some terminology needs to be explained before this 

can be understood properly. 

A screen is a viewing area, the full size of the 

computer monitor screen. A screen is the basic 

template which defines the number of colours and 

resolution of the objects displayed. When you switch 

on, there is a single medium resolution screen called 

the 'Workbench screen' in view. The Amiga has the 

ability to hold more than one type of screen in its 

memory, but only one full screen can be viewed at a 

time . Screens have 'drag bars' and 'depth gadgets' 

(see your Amiga manual), and they can be moved 

around like windows. 

A window is a viewing area, which lives on the 

screen. A screen can hold any number of 

overlapping windows (memory permitting), and 

every window inherits the colours and resolution 

which are supported by that screen . Windows are 

treated as pixel grids, which have co-ordinates x,y. 

Note that the origin (0,0) is located at the top left­

hand corner of any window. 

A raster port is an area of memory which is used to 

store the contents of a window. Before multiple 

windows were conceived, only one raster port was 

needed for a computer display and programmers 

seldom had to know about such things. Now several 

are required - one for each window. Being a multi­

tasking machine, the Amiga could be using several 



windows at one time and so programs must specify 

the window they are using when drawing graphics. 

This is done by using a pointer to a raster port. A 

raster port is found from a window structure. A 

window is opened with the Open Window function: 

window= OpenWindow(&NewWdw); 

and then a raster port pointer is found with: 

rast = window->RPort; 

See the example program for details. 

Graphics 'Primitives' 
There are many graphics command routines (or 

'primitives'), supported by the Amiga! Here are 

some of the most common ones. The parameters 

have the following types, as defined on the Amiga: 

short x,y,xp,yp,mode; 

BYTE colour; 

struct RastPort *rast; 

SetAPen ( rast,colour) 

The 'A' pen defines the colour of foreground 

objects . Colour is a colour between zero and the 

macro 'numofcols' minus one. In the example below 

numofcols is 16. 

SetOPen (rast,colour) 

The 'O' Pen defines an outline colour which is 

searched for by the flood-fill routines. (Implemented 

as a macro .) 

Move (rast,x,y) 

Move to a point relative to top left-hand of window 

(which is 0,0), and rast is a pointer to the window 

raster port. 

34 - THE AMIGA 

• 



C - A DABHAND GUIDE 

Draw ( rast,x,y) 

Draw from current position to x,y. Draw draws in 

the colour set by SetAPen . 

WritePixel( rast,x,y) 

Plot one pixel at x,y. WritePixel plots a single pixel 

in the colour specified by SetAPen. 

RectFill( rast,x,y,x1,y1) 

This draws and fills a rectangle with the colour set 

by SetAPen. The rectangle is specified by giving the 

co-ordinates of the top left-hand corner (x,y) and 

the bottom right-hand corner (xl,yl) . 

Flood (rast,mode,x,y) 

This routine performs a flood fill. It has two modes 

of operation, colour fill and outline fill (modes 1 and 

0 respectively) . The two modes work as follows: 

I) Outline fill begins at the point x,y and starts 

searching for a closed outline in the colour set 

by SetOPen. It fills the area bounded by that 

outline with the colour set by SetAPen. 

2) Colour fill is a way of re-colouring certain areas 

of the display. This mode starts from x,y and 

makes a note of the colour of the pixel at that 

point. It then searches for neighbouring pixels 

of the same colour and re-colours them in the 

new colour set by SetAPen. 

The example program below shows the simplest way 

to use these graphics primitives. It is split into two 

separate files, called: 

graphO.c 

graphl.c 

graphl.c is a general toolkit zone for opening a 

graphics window and graphO .c is the actual 



program. Graphl.c is #included into the first file. It 

can also be included in other programs and 

customised as required. 

Listing 33.3. Amiga graphics demo. 

34 - THE AMIGA 

/*************************************************/ 

/* 

/* AMIGA GRAPHICS DEMO (graphO.c) 

/* 

*/ 

*/ 

*/ 

/*************************************************/ 

#include <stdio.h> 

#include <graphl.c> 

/*************************************************/ 

/** LEVEL 0 : Main Program **/ 

/*************************************************/ 

main () 

open_graphics_window (); 

create_picture (); 

wait for window close () ; 

/*************************************************/ 

/** LEVEL 1 **/ 

/*************************************************/ 

create_picture () 

{ short x,y; 

SetAPen(rast,RED); 

Move (rast,20,20); 

Draw (rast,200,20); 

Draw (rast, 200, 100); 

• 



C - A DABHAND GUIDE 

Draw (rast,20,20); 

SetOPen (rast,RED); 

SetAPen (rast,BLUE); 

Flood (rast,OUTLNMODE,30,30); 

SetAPen (rast,PINK); 

RectFill (rast,100,100,130,130); 

x = y = 10; 

WritePixel (rast,x,y); 

/* end */ 

This ' zone' is a general-purpose file which can be 

included in any program in order to create a 

graphics window. Notice the use of pre-initialised 

structures for creating screens and windows. Notice 

also the use of flags and messages such as in the 

statement #define WINDOWGADGETS . These 

features are typical of the way in which screens and 

gadgetry are built up. 

Listing 33.4. Open a graphic screen and window. 

/*************************************************/ 

/* 

/* graphl.c 

/* 

*/ 

GRAPHICS Open a graphics screen & window */ 

*/ 

*/ /* 

/*************************************************/ 

#include <types.h> 

#include <intuition.h> 

#include <graphics/gfxrnacros.h> 

#define WINDOWGADGETS (WINDOWSIZING I WINDOWDRAG I 

WINDOWDEPTH I WINDOWCLOSE) 

• 



#define true 

#define OUTLNMODE 

#define COLMODE 

#define width 

#define height 

#define numof cols 

enum ScreenColours 

BLACK, 

WHITE, 

GREY, 

RED, 

BLUE, 

PINK 

} ; 

l 

0 

1 

480 

160 

16 

34 - THE AMIGA 

/*etc. */ 

extern struct Window *OpenWindow(); 

extern struct Screen *OpenScreen(); 

int IntuitionBase = NULL; 

int GfxBase = NULL; 

USHORT class; 

/*************************************************/ 

/** STRUCTURE ASSIGNMENTS **/ 

/*************************************************/ 

struct NewWindow NewWdw 

20, 20, 

width, height, 

1, 2 t 

MOUSEBUTTONS 

/* top left x,y */ 

/* width,height */ 

• 



C - A DABHAND GUIDE 

CLOSEWINDOW, 

WINDOWSIZING I RMBTRAP I 

GIMMEZEROZERO I WINDOWGADGETS, 

NULL, 

NULL, 

"Graphics Windown, 

NULL, 

/* Title of window */ 

NULL, 

50,40,200,100, 

CUSTOMSCREEN 

} ; 

struct NewScreen NewScr 

0, 0, 

640,200,4, 

1, 0, 

HIRES, 

CUSTOMSCREEN, 

NULL, 

/* top left x,y */ 

/* width,height,type */ 

"Graphic Screenn, 

NULL, NULL 

} ; 

struct Window *window; 

struct Screen *Ser; 

struct RastPort *rast; 

/* Global vars */ 

/*************************************************/ 

/** LEVEL 0 **/ 

/*************************************************/ 

open_graphics_window () 

GfxBase = OpenLibrary("graphics.libraryn, 0); 

if (GfxBase == NULL) 

• 



34 - THE AMIGA 

printf("graphics library open failed\n"); 

exit (0); 

IntuitionBase = OpenLibrary("intuition.library", 0); 

if (IntuitionBase == NULL) 

printf("intuition library open failed\n"); 

exit(O); 

Ser (struct Screen*) OpenSereen (&NewSer); 

if (Ser NULL) 

printf("Couldn't open new sereen\n"); 

CloseLibrary(GfxBase); 

CloseLibrary(IntuitionBase); 

exit(O); 

NewWdw.Sereen Ser; 

if ((window OpenWindow(&NewWdw)) ==NULL) 

printf ("open window failed\n"); 

CloseSereen (Ser); 

CloseLibrary(IntuitionBase); 

CloseLibrary(GfxBase); 

exit (0); 

rast window->RPort; 

/*************************************************/ 

II 



C - A DABHAND GUIDE 

wait for window close () /* Wait for window close */ 

struct IntuiMessage *message; 

while (true) 

while ((message=(struct IntuiMessage *) GetMsg 

(window->UserPort)) ==NULL); 

class = message->Class; 

ReplyMsg(message); 

if (class==CLOSEWINDOW) break; 

if (window != NULL) 

CloseWindow (window); 

if (Ser != NULL) 

CloseScreen (Ser); 

if (GfxBase != NULL) 

CloseLibrary (GfxBase); 

if (IntuitionBase != NULL) 

CloseLibrary (IntuitionBase); 

• 



The Atari ST 

The C compiler for Atari ST micros (see 

acknowledgements), supports a full range of 

standard functions plus many more for manipulating 

the special features on the ST machines. The C 

programmer also has the benefit of a powerful and 

attractive programming environment which runs 

under the control of the mouse/window operating 

manager. 

Running C under TOS 
The Atari ST machines work under their own 

operating system TOS, running the GEM mouse­

and-window environment. The C compiler and the 

editor programs are run by clicking icons or 

directory lists with the mouse. Program parameters 

are entered through 'dialogue boxes' which prompt 

the user for a response. 



C - A DABHAND GUIDE 

• 

The machine boots up into the desktop manager, 

from which the user clicks and drags icons in order 

to operate the compiler and editor. The operation of 

the compiler is described quite fully in its manual. A 

program is created using the editor supplied. The 

compiler is executed and the linker is then used to 

link the compiler's code to ST object code libraries. 

The linker uses an extremely versatile command file 

method of operation, providing a very flexible 

programming environment. 

Special Features 
The Atari is a non multi-tasking machine and so it 

can support single keypress I/O in a simple way. 

This means that a program learns about every press 

of the keyboard the instant it happens. This makes it 

much easier to write friendly, typing based 

programs, or to respond to keyboard presses as well 

as mouse activities. 

The ST supports an extra 'get character' function for 

this immediate I/O which is called: 

get ch 

This function is almost identical to getchar except 

that it is 'connected' directly to the keyboard. 

Characters enter the keyboard buffer immediately 

and the user does not have to press RETURN in 

order to receive characters. The key character which 

is pressed on the keyboard does not appear on the 

screen if getch is called. The same facility commonly 

is supported in BASIC interpreters under the name: 

GET 

getch might be accompanied by getche, which 

works identically, but echoes the typed character to 

the screen in addition to receiving the input. 

Examples of the use of these functions are: 



char ch; 

ch= getch(); /*wait for 1 keypress */ 

ch= getche(); /*wait for 1 keypress */ 

In the second case, the typed character is seen on 

the screen when it is typed. 

Examples 
main () 

printf ("Press any key\n"); 

getch; 

main () 

char ch; 

printf ("Choose menu option A/B/C\n"); 

while (true) 

switch (ch = get ch ()) 

case 'A' printf ("A\n"); 

case 'B' printf ("B\n"); 

case 'C' printf ("C\n"); 

Special support is given to programmers who need 

to access the deeper levels of TOS, and the built-in 

operating system functions. In addition, the Atari's 

powerful graphics routines can be manipulated in a 

simple way through standard library functions, 

provided by the compiler development system . 

35 -THE ATARI ST 

• 



C - A DABHAND GUIDE 

• 

Graphics and the GEM 
Environment 
The ST compiler has a comprehensive set of 

graphics routines for line drawing, flood filling, 

drawing pie charts, circles, ellipses and plenty more 

besides . The GEM window system is fully 

supported, with functions to open and close 

windows, access to different screen fonts, fill­

patterns and complete mouse control. 

GEM uses the 'standard graphics' approach to 

windows . Before a program can make use of the 

GEM libraries, it must 'open a work station', which 

is actually a graphics driver library. This 

'workstation' acts as a kind of 'pseudo-device' which 

the user can write commands to for rendering 

graphics under GEM. 

Line 'A' Routines 
The basic set of graphics primitives on the Atari is 

known collectively as the line 'A' routines . These 

routines represent the most efficient way of drawing 

on the ST. It is not necessary to open a workstation 

for them, as they are below the level of GEM -

GEM calls them, in fact, for its own use . 

The GEM VDI 
A higher-level alternative to the line 'A' routines is 

to use the GEM VDI. The GEM system requires a 

'graphics device driver' called a 'workstation' to be 

opened before it can be used. A program which uses 

the GEM routines is less efficient than one which 

uses the raw line 'A' routines, but has the advantage 

of being independent of the machine running it . 



In order to understand the GEM environment, 

some terminology needs to be clarified. 

Workstation A graphics device driver. There is a 

separate driver for every output 

device such as the screen, printer, 

pen-plotter. The device is chosen by 

setting parameters in the open 

workstation function. 

Virtual Workstation 

Handle 

Polyline 

There is only one display screen in 

reality; in practice, you could imagine 

there being several, each behaving in 

different way and acting together to 

make up the total effect. A virtual 

workstation is a graphics driver with 

its own personal set of parameters 

about the way it works. Any real 

workstation can have several virtual 

ones attached to it. 

Every workstation has its own 

'handle' by which the graphics 

routines talk to it. This is just a label 

to distinguish between different 

drivers . 

A polyline is a shape made by joining 

up a set of points with straight lines. 

The name is an amalagamation of 

polygon and line. GEM uses 

polylines instead of normal primitive 

graphics commands . The user 

specifies an array of co-ordinate pairs 

which are to be joined up, as a 

parameter to the polyline draw 

function . 

35 -THE ATARI ST 

• 



• 

Window A window is a rectangular region of 

the screen display into which 

graphics are drawn . A window needs 

to be opened before it can be used, 

under the control of a particular 

workstation. 

To open a virtual workstation (to operate under the 

desktop), the user calls the function: 

WORD handle; 

WORD user_settings[ll]; 

WORD return_info[57]; 

v_opnvwk(user_settings,&handle,return_info); 

The function is supplied with some parameters in 

the form of an 11-element array, which the 

programmer must fill in. A program supplies it with 

the handle of the current 'real' workstation, and it 

returns a handle which is used to address and 

operate the virtual workstation plus a 5 7-element 

array of return data about the workstation's 

attributes! This return data need not concern 

programmers at this level. A program needs only to 

supply an array for the return values to be stored in 

- the values don't need to be used after that in 

simple programs. The user must, on the other hand, 

supply the complete 11-element array of parameters. 

This provides the workstation with details of screen 

colours, width and height of device and so on. The 

exact details of this need not conern the beginner -

a general purpose static array may be contructed and 

initialised ready for simple programs, as follows: 

static WORD user_settings[] 

1, 

1, 

1, 

1, 



1, 

1, 

1, 

1, 

1, 

1, 

2 

} ; 

Include this as a 'plug in part' in programs which 

need to use very simple graphics. 

There are many commands which can be addressed 

to the workstation. Here are just a few: 

vsl_color(handle,colour) 

This sets the graphics colour of lines drawn on the 

screen by the workstation specified . Colour is a value 

of Atari-defined type WORD: 

WORD colour; 

which takes a machine dependent value from zero 

up to the maximum number of colours on the 

machine, minus one . For example: 

#define noofcols 32 

states that the computer can support 32 colours . 

The colour values are then from zero to 31. 

v_pline(handle,nopairs,coordpairs 

This function draws a polyline, specified by an array 

of co-ordinate points. The polyline is drawn by the 

workstation specified by 'handle' . 'Nopairs' is the 

same as the number of points which make up the 

polyline . Coordpairs is an array of pairs . For 

example: 

static WORD coordpairs 

10, 10, /* Arranged x ,y */ 

35 - THE ATARI ST 

---~-



C - A DABHAND GUIDE 

• 

20,10, 

10,20, 

20,20 

} ; 

WORD nopairs = 4; 

v_pline(handle,nopairs,coordpairs); 

Area Filling 
GEM permits two kinds of flood filling: 

1) The user specifies a polyline which is then closed 

and filled with a particular colour by joining the 

last and first point together 

2) The user specifies a contour line of a particular 

colour which is the boundary of the fill area 

v_fillarea (handle,count,coords} 

This function fills a 'multiply connected' polyline . 

The line may cross itself any number of times. The 

parameters are the same as those for the polyline 

command. 

v_contourfill(handle,x,y,colour}; 

This function causes a closed boundary to be filled 

with the colour specified, by the workstation 

addressed under 'handle' . The user's workstation 

decides the colour and the pattern of the area to be 

filled. 

v _recfl( handle, rectangle}; 

This function draws a filled rectangle under the 

workstation specified by handle. The rectangle is 

specified by an array of four co-ordinates: 

static WORD rectangle[] = 



top_left_x,top_left_y, 

bottom_right_x,bottom_right_y 

} ; 

Listing 34.1. Atari graphics demo. 

The example below is a simple illustration of how to 

draw simple graphics displays with the functions just 

listed. 

35 - THE ATARI ST 

/*************************************************/ 

/* 

/* Atari Graphics Demo 

/* 

*/ 

*/ 

*/ 

/*************************************************/ 

/* Compile with -n option for long indentifiers */ 

#include <portab.h> 

#include <gemlib.h> 

/*************************************************/ 

/* Define some global data storage */ 

/*************************************************/ 

WORD return_info[57]; 

static WORD user_settings[ll] 

1, 

1, 

1, 

1, 

1, 

1, 

1, 

1, 

1, 

1, 

2 

) ; 

• 



C - A DABHAND GUIDE 

/*************************************************/ 

/* LEVEL 0 */ 

/*************************************************/ 

main () 

WORD GetWorkStation(),handle; 

handle= GetWorkStation(); 

GraphicsDemo (handle); 

CloseWorkstation(handle); 

/*************************************************/ 

/* LEVEL 1 */ 

/*************************************************/ 

WORD GetWorkStation () 

WORD handle, d; 

appl_init(); 

handle= graf_handle(&d,&d,&d,&d); /*give durrmy values*/ 

v_opnvwk (user_settings,&handle,return_info); 

return (handle); 

/*************************************************/ 

CloseWorkstation (handle) 

WORD handle; 

getch(); /*wait for a key to be pressed*/ 

v_clsvwk(handle); 

• 



35 -THE ATARI Sf 

/*************************************************/ 

GraphicsDemo (handle) 

WORD handle; 

static WORD coordpairs[] = 

10,10, 

20, 10, 

10,20, 

20,20 

I ; 

/* Polyline coords Arranged x,y */ 

static WORD rectangle[] 

500,500, 

600,400 

I ; 

WORD nopairs = 4; 

v_pline(handle,nopairs,coordpairs); /*Draw polyline*/ 

v_fillarea(handle,nopairs,coordpairs);/* Flood fill */ 

vr_recfl(handle,rectangle); /* Filled rectangle */ 

II 



C - A DABHAND GUIDE 



The 
Archimedes 

The Archimedes supports a full implementation of 

ANSI C standard, very comprehensively so for its 

many internal facilities for sound, graphics and 

windowing . The special C support libraries are 

straightforward to use and provide a powerful 

extension to the full complement of standard library 

functions. C is an ideal partner for the Archimedes, 

providing speed, power and a state of the art 

programming environment. 

Running C 
In order to write programs effectively, you have to 

be able to type commands into a MOS CLI . CLI 

stands for Command Line Interpreter. A CLI is a 

program which interprets a command language, as -----



C - A DABHAND GUIDE 

_""" __ _ 

discussed in Chapter Four, and provides the user 

with a relatively low-level interface to the computer. 

This is essential for programming, as all the 

programmer's tools exist at this level. 

The C compiler is invoked by executing the 

program CC on the compiler disc. For example: 

CC program_name <options> 

The effect of invoking the compiler is to take a 

source program and to convert it into suitable object 

code. A separate linker is used to resolve references 

to library functions provided by the implementation . 

The naming convention of the files produced by the 

compiler is slightly unusual, due to the operating 

system's method of directory handling (see next 

section). 

System Peculiarities 
The Archimedes runs the ADFS filing system under 

which sub-directory file-paths are denoted by a full 

stop. This means that filenames can't be represented 

in the standard way with a 'dot extension' under 

ADFS. The reverse system is used, so that a 

traditional filename: 

myprog.c 

must be represented by: 

c.myprog 

Similarly header files: 

stdio.h 

are stored as: 

h.stdio 

by the local filing system. In order to cope with the 

ANSI standard representations of header files, such 

as 'stdio .h' and 'ctype .h ', the compiler performs the 

conversion to local operating system format at 



compile time. You don't have to worry about calling 

the header files by their local ADFS names, but you 

can use the standard representations, with dot 

extensions afterwards, as used in this book. 

Operating System Support 
The standard operating system on the Archimedes is 

called Arthur. It is a non multi-tasking, command­

driven operating system, which supports a wide 

variety of operations. A special library of commands 

called Arthurlib is endorsed by the compiler which 

allows the programmer access to the Arthur 

operating system in C programs. Users who are 

familiar with previous Acorn computers will 

recognise the similarity between the C functions 

listed below and their predecessors in the 

BASIC/assembler world. 

Operating system commands can be passed to the 

Archimedes CL! by the function, system(). The 

purpose of system() is to pass a line of text directly 

to the command line interpreter of the computer. In 

other words, it imitates typing in a command to the 

CLI. The form of this function is: 

int system (), returnvalue; 

char *string; 

returnvalue =system (string); 

The return value is minus one if the operation failed, 

and zero otherwise. For example: 

system ("cat"); 

if (system("CDIR fred") -1) 

printf ("Can't execute command"); 

system ("run Myprog"); 

36 - THE ARCHIMEDES 

/* 2 */ 

/* 3 */ 

• 



C - A DABHAND GUIDE 

• 

system allows a program user access to the operating 

system without leaving an application program. 

Support is also provided for the standard operating 

system calls of the Acorn operating system, such as 

OSBYTE and OSWORD . The functions provided 

for handling these calls to operating system make 

use of special struct type variables to pass parameter 

values to them. The functions act and return a 

special struct type error message indicating whether 

or not an operation succeeded. 

osbyte 

osword 

osfile 

osargs 

osfind 

Friendly Text 1/0 
The standard Archimedes is a non multi-tasking 

machine and so it can support single keypress I/O 

in a simple way. This means that a program can learn 

about every keypress the instant it occurs. This 

makes it much easier to write friendly, typing-based 

programs. 

The Archimedes supports an extra 'get character' 

function for this immediate I/O, which is called: 

get () or getch () 

These functions are almost identical to getchar 

except that they are 'connected' directly to the 

keyboard - characters enter the keyboard buffer 

immediately and you don't have to press RETURN 

in order to receive characters. The key character 

which is pressed on the keyboard does not appear on 

the screen if get() is called . The same facility is 

commonly supported in BASIC interpreters under 

the name: 



GET 

get and getch might be accompanied by getche 

which works identically but echoes the typed 

character to the screen in addition to receiving the 

input. Examples of the use of these functions are: 

char ch; 

ch = (char) get() ; 

ch = getch () ; /* wait for 1 keypress *I 
ch= getche(); I* wait for 1 keypress */ 

In the first case the type of data returned is 'int', so 

the value must be cast into character form for 

normal usage. In the third case, the typed character 

is seen on the screen when it is typed . 

Examples: 
main () 

printf ("Press any key\n"); 

get() ; 

} 

void main () 

char ch; 

printf ("Choose rrenu option A/B/C\n"); 

while (true) 

switch (ch = (char) get ()) 

case 'A' printf ("A"); 

case 'B' printf ("B") 

case 'C' printf ("C"); 

36 - THE ARCHIMEDES 

• 



C - A DAB HAND GUIDE 

• 

Sound 
The sound facilities of the Archimedes are dealt with 

by a set of functions contained in the Arthurlib 

library. The Archimedes supports stereo sound in up 

to eight channels, which are manipulated in the 

traditional Acorn way, with some new additions. 

You must #include <arthur.h> in order to use these 

functions. 

sound_on() 

This function switches the sound system on so that 

the functions listed next can take effect. 

sound_ off() 

This function shuts down the sound system. 

voices( number) 

The user can select the number of sound channels 

required as some power of two up to eight - 1,2,4 or 

8. 

stereo( int,int) 

This function allows programmers to 'pan' sounds 

left and right in the stereo field of the sound system. 

sound( channel ,amplitude,pitch,du ration,synch) 

This function actually issues a sound from the sound 

output. Its parameters have the following meanings: 

channel a channel number from one to eight 

(see voices()) 

amplitude the loudness of the sound -15 to zero 

pitch values from zero to 255 

duration the length of the sound-minus one to 

254 



synch this is a value which indicates whether 

the sound is to be played at the same 

time as another sound, or after it. A 

value of minus two implies that 

sounds will follow one after the other. 

Listing 35.1 ARM jingle. 

36 - THE ARCHIMEDES 

/*************************************************/ 

/* 

I* ARM jingle 

/* 

*/ 

*/ 

*/ 

/*************************************************/ 

#include <arthur.h> 

/*************************************************/ 

void main () 

sound_on (); 

voices (1); 

jingle (); 

sound off (); 

/*************************************************/ 

jingle () /* instead of CTRL G beep ! */ 

sound (1, -15, 100, 1, -2); 

sound (1, -15, 200, 1, -2); 

sound (1, -15, 150, 1, -2); 

sound (1, -15, 250, 1, -2); 

sound (1, -15, 100, 1, -2); 

sound (1, -15, 159, 1, -2); 

/* end */ 

• 



C - A DABHAND GUIDE 

II 

Graphics 
The Archimedes' rich set of graphics and windowing 

routines can be accessed from C. The functions 

include primitives for rendering simple line-drawn 

graphics and for more complex imagery. The 

commands bear a sharp resemblance to the 

traditional BASIC routines as originally conceived 

by Acorn. A selection of the simplest of the line­

drawing routines is listed below. These functions are 

located in the library Authurlib. You must #include 

<arthur.h> in order to make use of these functions. 

All of the parameters to the functions below are of 

datatype 'int'. For example: 

int x,y, radius,col; 

circle(x,y,radius) 

This function uses the graphics routines to draw a 

circle whose centre lies at the co-ordinates (x,y), 

with radius as specified in the parameter list. Usage: 

clg 

int x = 200; 

int y 300; 

int radius = 50; 

circle (100, 100, 30); 

circle (x,y,radius); 

This valueless function clears the imagery from the 

current graphics window by filling the entire area 

with the background colour. 

els 

This valueless function clears everything in the 

current text window, by filling the window with the 

current text background colour. Usage: 

els() ; 



colour( col) 

This valueless function sets the colour of graphics 

text as printed in a text or graphics window. Usage: 

int col = 3; 

colour (2); 

colour (col); 

draw(x,y) 

This valueless function draws a solid line from the 

current graphics position to the position specified in 

the parameter list. Usage: 

int x = 10, y = 514; 

draw (200,412); 

draw (x,y); 

fill(x,y) 

This valueless function flood-fills an area of the 

graphics window with the current graphics colour. 

The co-ordinates supplied are the co-ordinates of 

any place inside the area to be filled. The fill routines 

work up to boundaries in the current graphics 

colour. Usage: 

int x = 400, y 500; 

fill (20, 30) i 

fill (x, y) ; 

gcol(mode,col) 

This valueless function sets the current graphics 

colour and rendering mode. The modes are as for 

the BASIC command GCOL. Usage: 

int mode = 0, col = 3; 

gcol (0, 3); 

gcol (mode,col); 

plot(k,x,y) 

This valueless function plots and draws points and 

lines. It is the route to all of the pixel-drawing 

36 - THE ARCHIMEDES 

• 



C - A DABHAND GUIDE 

functions . The value of k specifies the plot mode 

(solid/dotted lines and so on). See the BASIC 

manual for details of the k numbers. Usage: 

int k = 85, x = 100, y = 100; 

plot (69,500,500); 

plot (4,10,10,); 

plot (5,20,20); 

plot (k, x, y) ; 

rectanglefill( leftx, bottomy, width ,height) 

This valueless function plots and fills a rectangle in 

the current graphics colour. The user specifies the 

co-ordinates of the bottom left-hand corner of the 

rectangle and its width and height. Usage: 

int leftx 

int width 

100, bottomy = 100; 

200, height = 100; 

rectanglefill(leftx,bottany,width,height); 

rectanglefill(0,0,20,20); 

Listing 35.2 Archimedes graphics demo. 

/*************************************************/ 

/* 

/* Graphics Demo ARM 

/* 

*/ 

*/ 

*/ 

/*************************************************/ 

#include <arthur.h> 

/*************************************************/ 

void main () 

int discard; 

mode (1); 

gcol (0,1); 

move (20,20); 

draw (200,200); 

• 



36 - THE ARCHIMEDES 

gcol ( 0, 2) ; 

rectanglefill (200,200,100,100); 

gcol (0, 3); 

circle (300, 300, 200); 

fill (300, 300); 

discard= get(); /*Wait for key press */ 

• 



C - A DABHAND GUIDE 

• 



m PC's 

C is an excellent language for programming PCs and 

MS-DOS computers. It has the necessary flexibility 

to work on projects of all levels, and there are superb 

C compilers available for these machines. 

Running C 
When switched on, a PC usually 'boots up' into a 

CLI (command line interpreter) straight away from 

the system disc. In the CLI environment the screen 

prompt will look something like: 

A> 

or alternatively: 

C> 

displaying the default drive. The command line 

interpreter allows the user to type in MS-DOS 

commands such as: 



C - A DABHAND GUIDE 

• 

dir 

mkdir Cdevelop 

or to run programs by typing their names. Most 

compilers work from the CLI directly - the user 

types a command in order to compile a program. A 

batch file is usually used to execute the different 

phases of the compiler in one typing operation such 

as: 

cc program 

Some newer compilers offer a more substantial 

operating environment than the traditional CLI, 

with windows and mouse operations controlling a 

whole development environment of compiler, editor 

and debugger. 

MS-DOS has a special naming convention for files. 

This convention is subtly different from that used 

by some other operating systems. The convention 

for C related files is: 

filename.C 

filename.EXE 

filename .BAT 

is a C source file 

is an executable file (not 

filename.x) 

is a 'batch' file which is used to 

execute whole 'batches' or 

groups of MS-DOS commands 

in a single user operation. 

Filenames can be up to eight letters long, plus a dot 

extension as previously mentioned. When files have 

been named with the dot extension, they are not 

necessarily referred to with their full 'dotted' names. 

Files also look different in their directory, once they 

have been named with a file extension. When the 

user types: 

dir 



to find out what is on a disc, the filenames and their 

dot extensions are listed in a separate column: 

FILENAME.C becomes FILENAME C 

FILENAME.EXE becomes FILENAME EXE 

FILENAME.BAT becomes FILENAME BAT 

The C source files should always be called by the 

name filename.c, but the executable code which a 

compiler produces is run by typing a filename with 

or without its' .EXE' extension. 

Although MS-DOS contains a text editor called 

EDIT, which can be used to edit program files, most 

compilers will come as a package with their own 

development editors . Some of these editors might 

have comprehensive debugging utilities incorporated 

into them. 

MS-DOS and Facilities 
The PC has a number of distinctive features. The 

obvious feature is that it runs MS-DOS or PC-DOS, 

an industry standard operating system. The basic 

hardware on a PC is often skeletal, so few compilers 

commit themselves to supporting graphics or 

operations which require special hardware, like mice 

and so on. Special extension packages can usually be 

purchased to deal with machine extras. This 
uncertainty about hardware means that the main 

thrust of basic PC compiler programming has to be 

textual. 

Friendly Text 1/0 
The PC is a non multi -tasking machine and so it can 

support single keypress 1/0 in a simple way. This 

means that a program can learn about every press of 

37 - PC'S 

• 



C - A DABHAND GUIDE 

• 

the keyboard at the instant it happens. This makes it 

much easier to write friendly, typing based 

programs. 

The PC supports an extra 'get character' function 

for this immediate 1/0 which is called: 

getch () 

This function is almost identical to getchar except 

that it is 'connected' directly to the keyboard -

characters enter the keyboard buffer immediately -

the user does not have to press RETURN in order 

to receive characters . The key character which is 

pressed on the keyboard does not appear on the 

screen if getch is called . The same facility is 

commonly supported in BASIC interpreters.This 

function is almost identical to getchar except that it 

is 'connected' directly to the keyboard - characters 

enter the keyboard buffer immediately - the user 

does not have to press RETURN in order to receive 

characters. The key character which is pressed on the 

keyboard does not appear on the screen if getch is 

called. The same facility is commonly supported in 

BASIC interpreters under the name: 

GET 

getch might be accompanied by getche() which 

works identically, but echoes the typed character to 

the screen in addition to receiving the input. 

Examples of the use of these functions are: 

char ch; 

ch= getch(); /*wait for 1 keypress */ 

ch= getche(); /*wait for 1 keypress */ 

In the second case, the typed character is seen on 

the screen when it is typed in . 



Examples 
main () 

printf ("Press any key\n"); 

getch; 

main () 

{ char ch; 

printf ("Choose menu option A/B/C\n"); 

while (true) 

switch (ch= getch()) 

case 'A' 

case 'B' 

case 'C' 

Special Support 

printf ("A"); 

printf ( "B") ; 

printf ("C"); 

Special support is given to programmers who need 

to access the deeper levels of DOS and the built in 

operating system functions. The facilities available 

are compiler dependent, and to some extent PC 

model dependent. Some compilers support a full 

range of DOS and BIOS calls while others provide 

limited support. Readers should check individual 

compiler manuals to determine exactly what is 

supported. 

37 - PC'S 

IJ 



C - A DABHAND GUIDE 

• 

Sound 
One such facility is a 'sound' call which generates 

tones from the PC's internal loudspeaker. The 

sound functions are : 

void sound_tone(cycles,uptirre,downtirre); 

void sound_beep(frequency); 

void sound_click(); 

All the function parameters are int types. 

Sound_click simply makes a click sound from the 

loudspeaker. Sound_beep makes a tone of fixed 

length of the frequency given ( 1000 is a typical 

frequency value) . Sound_ tone allows the 

programmer to specify the pitch and duration of 

noises generated by the internal speaker. Cycles is 

the number of full cycles of the square wave-form 

which is output, so this specifies the duration of the 

sound. A small value is a quick click and a long value 

is a long tone . Uptime and downtime define the 

pitch of the sound. They are times so they vary the 

opposite way to pitch or frequency. The longer 

these values are, the lower the pitch and vice versa . 

Zero values result in uncontrolled effects. 

This example provides a routine to go into an 

output toolkit . There is nothing more annoying 

than a program which beeps at the user with the 

same irritating tone everytime he/she does 

something wrong. The function jingle provides a 

friendlier sound . 



37 - PC'S 

Listing 36.1. A PC jingle. 

/*************************************************/ 

I* 
/* Jingle 

/* 

sound example 

*/ 

*I 
*/ 

/*************************************************/ 

main () 

jingle () ; 

/*********** **************************************/ 

jingle () 

sound tone (50,1000,10); 

sound tone (50, 400, 10); 

sound tone (50, 600, 10); 

sound tone (50, 900, 10); 

sound tone (50, 90, 10); 

sound t one (50, 10, 50); 

/* end */ 

MS-DOS Support 
Another extremely useful function which can be 

found in C compilers is system . The purpose of 

system is to pass a line of text directly to the 

command line interpreter of the computer. In other 

words, it imitates typing in a command to the CLI. 

The form of this function is: 

int system(), returnvalue; 

• 



C - A DABHAND GUIDE 

char *string; 

returnvalue =system (string); 

The return value is minus one if the operation failed, 

and zero otherwise . For example: 

system ( "dir") ; /* 1 */ 

if (system("mkdir fred") -1) /* 2 */ 

printf ("Can't execute command"); 

system ("Myprog.EXE"); /* 3 */ 

system could be be used to allow a program user 

access to the operating system without leaving an 

application program. 

Child Processes 
Child processes are new programs which can be 

called and run during the course of some other 

program, without having to terminate the calling 

program. Child processes are a way of controlling a 

group of related programs from one manager. For 

example, a C editor could call up its C compiler as a 

child process, to compile a program without ever 

having to leave the editor. The compiled program 

could also be run under the auspices of the editor, as 

a child process. Another example, a menu manager, 

could select a given program from a menu of several, 

without having to abandon control. Child processes 

are not multi-tasking. They do not run at the same 

time as one another, they are simply a transfer of 

control to a new place. 

One program is suspended while another one runs 

and then control returns to the original spot in the 



original program. Child processes give the 

programmer a tool with which to write more 

structured software. As a program naturally branches 

out, it can be split, not only into functions, but into 

separate programs, running under the guidance of a 

manager. 

A program is said to 'spawn' a child process, so 

command functions dealing with the execution 

control are named: 

37 - PC'S 

int spawnl (mode,pathname,argO,argl, ... argn, NULL); 

int spawnlp (mode,filename,argO,argl, ... argn, NULL); 

int spawnv (mode,pathname,argv); 

int spawnvp (mode,filename,argv); 

int mode; 

/* strings */ 

char *pathname, *filename; 

char *argO, *argl, .... 

char *argv[]; /* Array of strings */ 

These four functions work similarly. The 

programmer might wish to call a program which 

accepts parameters or 'arguments'. This is 

accommodated by the child process functions. The 

first two functions operate with a list of parameters, 

ending in a NULL byte. The second two use 

initialised arrays of parameters which must end with 

NULL entries. 

The mode integer is irrelevant at present but is 

included for future compatibility. Pathname is a 

string which gives a full file specification for the 

program which is to be loaded. This includes the 

appropriate directory. Filename is simply a program 

name, with the directory path omitted. 

II 



C - A DABHAND GUIDE 

#define mode 0 

result= spawnl (mode,"A:branch\prog.EXE",NULL); 

result= spawnlp (mode,"prog.EXE","l","param2",NULL); 

static char argv[] 

/* see text */ 

"1" I 

"param", 

NULL 

) i 

result 

result 

• 

spawnv (mode,"C:prog.EXE",argv); 

spawnvp (mode,"prog.EXE",argv); 

The first element of the argument array (argv[O]) is 

ignored. The final element must be NULL to mark 

its end. 

A child program can be aborted at any time by 

calling abort or exit(O) . Control then returns to the 

caller. 

Similar command functions may also exist under 

names beginning with 'exec': 

execl () 

execlp () 

execv () 

execvp () 

These functions load a new program to replace the 

old one completely. Control does not return to the 

original program. 

Final Note: Program Style 
Even though many compilers don't provide 

immediate support for graphics and the more 

elaborate operations available, there is still room for 

these things in PC programs. Programmers are 



advised to have expansion and upgrade in mind and 

to design programs accordingly . Functions for 

graphics can still be incorporated into programs in 

the form of empty functions, to be filled in at a later 

date: 

draw_graphics () 

By adopting a practice like this, it becomes a simple 

matter to develop and expand programs in the 

future . 

37 - PC'S 

• 



C - A DABHAND GUIDE 

• 



BBC Master 

C is available for the BBC microcomputers, the 

Acorn Master 128 and the Master Compact. It is a 

full implementation of Kernighan and Ritchie C 

with many of the accepted standard library 

functions. 

Running C from the CLI 
When switched on, Acorn computers boot up into 

the default language of the machine, which is 

normally BBC BASIC. The BASIC language allows 

commands to be passed to the operating system 

through the operating system Command Line 

Interpreter (CLI), by prefixing statements with a 

star character '*'. The C compiler has to be loaded 

into Sideways RAM, or second processor memory by 

inserting the disc and typing: 

II 



C - A DABHAND GUIDE 

• 

*EXEC SETUP 

and pressing the BREAK key: 

*C 

*MOUNT 

SETPATH $ 

then enters the C language CLI and leaves the 

machine ready for use. A program is compiled by the 

following sequence: 

COMPILE program 

LINK program 

The C language package contains an excellent screen 

editor for preparing program source files (which is 

provided as standard on the Master 128). 

System Peculiarites 
Master computers running ADFS use the full stop 

('dot') character for accessing sub-directories. This 

means that filenames cannot be represented in the 

standard way with a dot extension under ADFS. The 

reverse system is used, so that a traditional filename: 

myprog.c 

must be represented by: 

c.myprog 

Similarly, header files: 

stdio.h 

must be written as: 

h.stdio 

Limitations 
The C language provided by this compiler does not 

approach ANSI standard C, but 'Kernighan and 

Ritchie' standard C. This means there are several 



features described in previous chapters which are not 

supported by this compiler. 

1) Maths library. Although the header file 'h.math' 

is included in the header directory, no maths 

object code library is included, so none of the 

special maths functions of Chapter 21 are 

supported. 

2) Structures may not be used as parameters and 

functions may not return a struct type . 

Functions which need to hand structures 

between functions must use pointers to 

structures as parameters only. 

3) The data types: enum, volatile, const are not 

supported. 

Listing 37.1. Sample C program for BBC Master. 

The example shows how a simple C program looks 

under BBC MasterC. 

38 - BBC MASTER 

/*************************************************/ 

/* 

/* BBC Master C 

/* 

*/ 

*/ 

*I 
/*************************************************/ 

#include <h.stdio> 

#include <h.ctype> 

/*************************************************/ 

main () 

char ch; 

do 

ch getchar(); 

while (isalpha(ch)); 

/* end */ 

• 



C - A DABHAND GUIDE 

• 

Special MOS Support 
The following commands can be used to interface 

directly to the Acorn machine operating system 

(MOS) for access to user machine code routines and 

standard operating system calls such as OSBYTE and 

OSWORD. Some knowledge of 6502 machine code 

is assumed. 

return= call(address,A,X,Y, param1,param2 ... ); 

This function is like the BASIC function, USR. It 

hands control over to a user machine code routine, 

located at the address supplied in the parameter list, 

and the values of A, X and Y are used to initialise the 

accumulator and index registers respectively. Any 

values provided after these are assumed to be 

parameters to the program. All parameters are of int 

type. The return value is oflong int type. 

The user's machine code program is entered with 

the variable : 

iacc 

being equal to the address of the first parameter. 

Parameters are located on the stack. They are 

pushed on backwards, so that paraml is on top of 

param2 and so on . After your routine has been 

executed, the function returns with a long integer 

value: 

long int return; 

which is made up of four bytes arranged (as with the 

BASIC USR function) in the form AXYP. The value 

of the P register, for example, is then found by 

writing: 

int P; 

P = (return && OxFF); 



oscall( ptr ,add ress,A,X, Y) 

A variation on the call() function is supplied in 

oscall() . This routine calls a machine code user 

routine at 'address', supplying the A,X,Y registers 

with the values in the parameter list, and a pointer to 

a structure which contains the return information. 

For example: 

struct _osret return; 

oscall (&return, OSBYTE, 7,7,0); 

The _osret structure is defined in the operating 

system header file 'h .osdefs' . The oscall function 

tests for system errors (handled in the usual way 

with BRK) . The error member of the return 

structure is set to the value 'true' if an error 

occurred, and 'false' otherwise. This allows control 

to return to the calling C program intact, and 

informs the calling program of any errors which 

were incurred during the execution of the user 

routine . For instance: 

/* true is anything except zero */ 

/* false is zero */ 

if (return.error) 

38 - BBC MASI'ER 

printf ("Program returned with an error"); 

system( string) 

system passes a string of text to the operating 

system's command line interpreter. This allows 

programs to communicate directly with the 

operating system, without leaving control of a C 

program. For example: 

system ("CAT"); 

1s equivalent to the user typing *CAT on a 

command line. 

II 



C - A DABHAND GUIDE 

Errors 
Errors are flagged by the global variables errno and 

_sysmsg[], which contain the error number and 

error string respectively. Error number is an integer 

and _sysmsg is a pointer to a character array: 

printf ("Error %dis : %s",ermo,_sysmsg); 

Graphics 
No immediate support is given to graphics by this C 

compiler, but Acorn micros offer easy access to 

graphics routines in the form of control sequences, 

making it a simple matter to create a user graphics 

library. 

The plot command could be implemented by the 

following: 

plot (k,x,y) 

int k, x ,y; 

char ck,lx,mx,ly,my; 

ck (char) (k && OxFF); 

lx 

mx 

ly 

my 

printf 

(char) (x % OxFF); 

(char) (x I OxFF); 

(char) (y % OxFF); 

(char) (y I OxFF); 

("\x19 %c %c %c %c %c",ck,lx,mx,ly,my); 

k is the plot mode and x and y are the screen co­

ordinates . Ix and mx are respectively the least 

significant byte and the most significant byte of the 

two-byte integer, x. Similarly, ly and my are the least 

significant byte and most significant byte of y. The 

code above is equivalent to the following BASIC 

procedure: 



DEF PROCplot (k,x,y); 

ck k AND &FF 

lx x MOD &FF 

mx x DIV &FF 

ly y MOD &FF 

my y DIV &FF 

VDU 25,ck,lx,mx,ly,my 

ENDPROC 

or even more simply: 

PLOT k,x,y 

The example shows how the main graphics functions 

can be implemented in C using printf(). The 

graphics routines have been made into a library file 

called 'h.graphics' (stored in the H directory), so 

that they may be included in any program. 

Listing 37 .2. Graphics demo and header file. 

38 - BBC MASTER 

/*************************************************/ 
/* 

/* Graphics Demo 

/* 

*/ 

*/ 

*/ 

/*************************************************/ 

#include <h.graphics> 

main () 

mode (2); 

gcol (0,1); 

RectFill (0,0,200,200); 

gcol (0, 2); 

move (200,200); 

draw (0,0); 

pixel (300, 300); 

• 



C - A DABHAND GUIDE 

Graphics Header File 

/*************************************************/ 

/* 

/* GRAPHICS HEADER FILE FOR BBC MASTER 

I* 

*/ 

h.graphics */ 

*I 
/*************************************************/ 

/* Toolkit of graphics routines */ 

#ifndef stdout 

#include <h.stdio> 

#endif 

/*************************************************/ 

plot (k,x,y) 

int k,x,y; 

char ck,lx,rnx,ly,my; 

ck (char) (k && OxFF); 

lx (char) (x % OxFF); 

rnx (char) (x I OxFF) ; 

ly (char) (y % OxFF); 

my (char) (y I OxFF); 

printf ("\xl9 %c %c %c %c %c",ck,lx,rnx,ly,my); 

/*************************************************/ 

mode (k) 

int k; 

printf ("\xl6 %c", (char) (k && OxFF)); 

II 



38 - BBC MASTER 

/*************************************************/ 

gcol (a,b) 

int a,b; 

printf ("\xl2 %c %c", (char) (a && OxFF), (char) (b && OxFF)) ; 

/*************************************************/ 

#define move(x,y) plot (4,x,y) 

#define draw(x,y) plot (5,x,y) 

#define pixel(x,y) plot (69,x,y) 

#define triangle(x,y) plot (85,x,y) 

/*************************************************/ 

RectFill (xl,yl,x2,y2) /* Filled rectangle */ 

move (xl,yl); 

move (x2,yl); 

triangle (x2,y2); 

move (xl,yl); 

triangle (xl,y2); 

/* end */ 

The file 'graphics' should be saved under the 'h' 

directory so the compiler can locate it. 

• 



C - A DABHAND GUIDE 

• 



ll 

System 
programming 
under Unix 

Unix is a huge operating system with enormous 

possibilities for programming. It would take several 

books to cover the subject adequately, so we shall 

not attempt anything of the sort here. 

Instead, let's mention some key topics which are of 

special interest and list couple of useful Unix utilities 

which you can examine to learn about system 

programming in C. 

Unix comes in two main flavours : BSD and system 

5. System 5 is most prevalent in the business world, 

whereas BSD is most prevalent in academic circles. 

In this chapter, I shall think mainly of BSD Unix, 

• 



C - A DABHAND GUIDE 

• 

since I imagine that the most willing programmers 

will be those in more academic circles. 

Most of what follows, on the other hand, will apply 

to any Unix system. 

Peculiarities 
Are there any peculiarities in the Unix versions of C? 

This is a strange question to ask since C and Unix 

are inseparably intertwined . In a sense Unix has 

defined C for many years- but this is no longer true 

in the wake of the microcomputer revolution . In 

particular, you will not commonly find ANSI C 

compilers on Unix machines, although some public 

domain compilers can be made ANSI compatible 

with the use of special options. There is one instance 

(to my knowledge) in which BSD Unix C is not 

compatible with the rest of the world and it 

concerns the function sprint!\). 

sprintf() 
The usual definition of sprint!\) is that is a function 

which performs formatted printing directly onto 

strings. 

It is just like printf() . Like printf() it normally 

returns an integer value which is the total number of 

characters it wrote . The syntax is: 

int myint; 

char *str; 

n = sprintf(str," %d ... . ",myint); 

This is true for microcomputer C compilers and for 

System 5 Unix compilers, but NOT for BSD Unix 

compilers! Under BSD Unix, the value returned is 

not an integer but a string pointer to the start of the 

string. In other words, the function simply echoes 



39 - SYSfEM PROGRAMMING UNDER UNIX 

back the string pointer you give it to write to. The 

syntax becomes: 

int myint; 

char *strl,*str2; 

str2 = sprintf (str, "%d .... ",myint); 

where str2 == str. 

If you want to make BSD Unix compatible with the 

rest of the world, you must write: 

n = strlen(sprintf (str, "%d .... ",myint)); 

This has occasionally presented problems in porting 

programs from one machine to another. 

Writing Large Array 
Applications 
Because Unix works under a system of virtual 

memory (that is, it is not limited by the amount of 

RAM it has, but is able to swap RAM with disk 

space to increase its effective memory many times 

over) there is a subtlety in the way that arrays are 

stored in the memory. Not all C compilers on Unix 

systems are particularly clever at allocating memory 

for arrays. In particular not many are able to make 

full use of the virtual memory facility . This can cause 

problems if you write programs which typically 

process large arrays. 

For example, suppose you were to write a program 

which defined an array which was larger than the 

amount of free RAM your Unix machine had at a 

given time. In principle, Unix ought to be able to 

transparently take care of all the disk shuffiing 

required to allow this to happen. In 

practice,however, most compilers will write code 

which does not allow Unix to do its job. The 

• 



C - A DABHAND GUIDE 

• 

program will fail to allocate an array, unless you 

manage to free some more space for the job. Note 

that this is only a problem when the array is first 

defined - because once the array is in the memory, 

Unix can swap it out bit by bit if it needs to. The 

problem is getting started. There has to be enough 

memory for the whole array in the beginning. 

There is really no solution to this problem, unless 

you are willing to rewrite your program using 

malloc() and free() . Using these functions you can 

allocate memory in smaller segments and join them 

together using pointers. This means that you avoid 

asking for a whole world of memory in one go . The 

chances of your program succeeding are inversely 

proportional to your greed . 

If you ask for a little memory at a time (preferably in 

lumps of the same size) then you stand a much 

better chance of getting your program going on the 

system. This is perhaps a lot of work in 

programming, but if you really need huge amounts 

of memory, it could be worth it. Note however that, 

if your machine is forced into a lot of swapping and 

paging, there can be a serious performance 

degradation. 

Example 1: Signals and 
Dmmons 
Unix is a multiuser system, it has a system of control 

for all it tasks. The system can rid itself of jobs at any 

time by 'killing' them. Before the system manager 

puts the knife in,it is common to send a signal to the 

program concerned, asking it more or less politely to 

give itself up. Programmers who write applications 

under Unix should write programs which can handle 



39 - SYSTEM PROGRAMMING UNDER UNIX 

these signals, so that for example, if a program 

receives a termination signal, it saves all its data and 

then quits. Much sorrow can be caused to programs 

which get caught with their pants down at system 

shutdown time. 

In another application, you might want to write a 

program which is immune to keyboard interrupts. 

Then you want the program to ignore signals! 

To summarise these points lets write a "daemon". A 

daemon is a process which lies in the background 

and does something, hopefully useful, usually 

performing some service. Daemons have to survive 

even when nobody is logged in to the machine, so 

they much free themselves from all ties to a 

keyboard of a screen.Use the "man" manual 

command in Unix to find out about the functions 

used in the example below. You will learn a lot by 

studying this example. 

fork() 
A program becomes a daemon by executing a fork() 

statement.This causes the program to spawn an 

almost identical copy of itself. You then write your 

program in such a way that the new version survives 

but the original copy dies. The syntax is usually 

if (fork()) 

{ 

exit (0); 

This statement gets executed in both copies of the 

program. In the original, the value of fork is true, in 

the new copy it is false. 

• 



C - A DABHAND GUIDE 

• 

signal() 
We then define a signals handler, after including the 

signals header file . We do this using a pointer to a 

function which will handle the signal. 

The example below is an answering machine for 

mail. If you go away on holiday and cannot answer 

you mail, you simply create a file " .autoanswer.msg" 

in your home directory and everyone who mails you 

receives that message once . The program is very 

simple, but shows a number of useful things: how to 

look through directories,how to get password and 

user information from the system, how to handle 

signals, locks and child processes. It works roughly 

as follows. It looks in the /home area of your Unix 

system for any directories which is assumes to be 

users' home directories. In each of those directories 

it looks for the file ".autoanswer.msg" and ifit finds 

it, it looks at all the incoming mail in the queue 

"/var/spool/mail/username"and attempts to reply 

to each new sender. The program keeps a record of 

those who have already mailed once and does not 

send the autoreply more than once, regardless of 

how many messages a given mailer sends. 

A list of "badusers" can be created to deny 

unfriendly users access to the facility. 

Look through the listing and try to decipher it. 

There are notes refering to the listing to follow . 



39 - SYSTEM PROGRAMMING UNDER UNIX 

Listing. 
/************************************************************/ 

/* 

/* AUTOANSWER daemon 

/* 

/* 

/* 

*I 
for UNIX and small UNIX-like systems */ 

which can't use the vacation program */ 

17/7/91 v 1.3 

I* (c) Mark Burgess 1991. 

*I 
*/ 

*I 
*/ I* 

I* NOI'E:Intended mainly for small systems, although it will work */ 

/* a system of any size: it seems a burden if there are many*/ 

/* mail users - better to distribute the load local */ 

I* */ 

/* See end of program for documentation notes/corranents */ 

/* *I 
/************************************************************/ 

#include <stdio.h> 

#include <sys/types.h> 

#include <sys/dir.h> /*May differ on scree systems e.g. <dirent.h> */ 

#include <signal.h> 

#include <pwd.h> 

#define true 1 

#define false 0 

#define nova! 0 

#define root 0 

#define daem:m 1 

#define IF 10 

#define VERSION "1.3" 

/************************************************************/ 

/* System configuration infonnation - fill in for your machine */ 

/************************************************************ / 

#define LOCKFILE 

#define MAILDIR 

#define OPERATOR 

#define BADUSERS 

"/var/spool/locks/autoanswer_lock" 

"/var/spool/mail" 

"root" 

"/.AUTOANSWER.noaccess" 

II 



C - A DABHAND GUIDE 

tdefine SLEEPTIME 3600 I* 1 */ 

tdef ine MESGFILE ".autoanswer.msg" 

tdef ine WORKFILE ".autoanswer.oldmessages" 

tdef ine LINELENGTH 250 

tdefine NUMMESG 50 /* 2 */ 

tdefine MAXEXCL 10 

/***********************************************************/ 

I* Define the user areas en your UNIX system, harl rrany p:utiticns etc ?*I 

/***********************************************************/ 

tdef ine NUMBEROFDISKS 1 

char *DISK[NUMBEROFDISKS] 

"/home/ul" 

}; 

/* 3 */ 

/***********************************************************/ 

char ERR[LINELENGTH]; 

char EXCLUDED[MAXEXCL] [LINELENGTH]; 

/***********************************************************/ 

I* Level 0 */ 

/***********************************************************/ 

main () 

int i,pid,HandleSignal(); 

DIR *dirp; 

struct direct *file; 

char *filename(); 

if (getuid () ! = 0) 

printf("Only root can start daemons.\n"); 

exit (0); 

if (fork()) 

exit(O); 

• 

I* 4 */ 



39 - SYSfEM PROGRAMMING UNDER UNIX 

if (Locked()) 

exit(O); 

signal (SIGTERM,HandleSignal); 

pid = getpid () ; 

setpgrp(pid,pid); 

I* s */ 

printf("AUTOANSWER root version %s installed\n",VERSION); 

while (true) 

ReadExclusions(); 

for (i = O; i < NUMBEROFDISKS; i++) 

if ( (dirp opendir(DISK(i])) NULL) /* 6 */ 

setruid (daemon); 

sprintf (ERR, "ecro \"A.rt:orepl y ran' t open %s\" I /usr/ucb/rrail %s\n", M\Il.DIR, CPERA'.IIB) ; 

system (ERR) ; 

exit (0); 

for (file = readdir (dirp); file ! = NULL; file = readdir (dirp)) 

if (NotExcluded(file->d_name)) 

ProcessUser(file->d_name,i); 

closedir (dirp) ; 

sleep(SLEEPTIME); 

/************************************************************/ 
I* Level 1 *I 

/************************************************************/ 

• 



C - A DABHAND GUIDE 

Reac!Exclusions() /*Make an array to cut down disk access*/ 

FILE *fin; 

int i = O; 

if ((fin fopen(BADUSERS,"r")) 

return (true); 

while ( ! feof (fin)) 

fscanf(fin,"%s",EXCLUDED[i++]); 

EXCLUDED [i] [OJ 

fclose(fin); 

'\0'; 

NULL) 

/***********************************************************/ 

NotExcluded (usernarre)/* Prohibit user from using AUTOANS'WER */ 

{ int i; 

for (i = O; EXCLUDED[i] [O] != NULL; i++) 

if (strcmp(EXCLUDED[i],username) 0) 

return(false); 

return (true); 

/***********************************************************/ 

ProcessUser (usernarre,disk) /* OJ.eek users with autoreply files */ 

char *username; 

FILE *fp; 

struct passwd *pw; 

char file[LINELENGTH]; 

char oldaddr[NUMMESG] [LINELENGTH]; 

II 



39 - SYSTEM PROGRAMMING UNDER UNIX 

int n,oldmessages 0, messages; 

if ( (pw = getpwnam (username)) -= NULL) I* 7 */ 

setruid (daem:m) ; 

sprintf(ERR, "echo Autoanswer: %s not found in /etc/passwd I 

/usr/ucb/mail %s \n", username, OPEFA'ICR) ; 

system (ERR) ; 

return(noval); 

if (setruid(pw->pw_uid) -1) 

setruid(daeITOn); 

sprintf("echo Autoanswer: unknown failure of setruid 

for user %s I /usr/ucb/mail %s",username,OPERATOR); 

system (ERR) ; 

return (noval); 

sprintf(file,"%s/%s/%s",DISK[diskJ,username,WORKFILE); /* 8 */ 

for (n 0; n < NUMMESG; n++) 

oldaddr[nJ [OJ '\0'; 

if ((fp 

{ 

fopen (file, "r")) ! = NULL) 

fscanf(fp,"%d",&oldmessages); 

for (n = 0; !feof(fp) && n < NUMMESG; n++) 

fscanf(fp,"%s",oldaddr[nJ); 

oldaddr[nJ [OJ 

fclose(fp); 

'\0'; 

• 



C - A DABHAND GUIDE 

sprintf(file,"%s/%s/%s",DISK[disk],username,MESGFILE); /* 9 */ 

if ((fp - fopen(file,"r")) ==NULL) 

{ 

return (noval); 

fclose (fp) ; 

rressages - AutoAnswer(file,usernarre,oldrressages,oldaddr);/* 10 */ 

sprintf(file,"%s/%s/%s",DISK(disk],username,WORKFILE); 

if ( (fp fopen (file, "w")) != NULL) 

if (messages < oldmessages) I* 11 *I 

fprintf(fp,"0"); 

else 

fprintf(fp,"%d\n",messages); I* 12 */ 

for (n 0; oldaddr(n] [OJ != '\0'; n++) 

fprintf(fp,"%s\n",oldaddr(n]); 

fclose(fp); 

return (noval); 

/***********************************************************/ 

I* LEVEL 2 *I 

/***********************************************************/ 

AutoAnswer(msg,user,oldressages,oldaddr) / * Reply to new rressages */ 

II 



39 - SYSTEM PROGRAMMING UNDER UNIX 

char *msg,*user; 

char oldaddr [NUMMESG] [LINELENGTH]; 

int oldmessages; 

char intray[LINELENGTH], 

header[LINELENGTH], 

return_address[LINELENGTH]; 

char co!TU'l\and[LINELENGTH]; 

FILE *fin; 

char ch = 'x'; 

int i, j; 

sprintf (int ray, "%s/%s", MAILDIR, user); 

if ((fin = fopen (intray, "r")) == NULL) 

return(noval); 

i = O; 

while (!feof(fin)) 

while (!feof(fin)) 

I* 14 */ 

for (j 

{ 

O; (!feof(fin)) && (j < LINELENGTH-2); j++) 

header[j] = getc(fin); 

if (header[j] == '\n') 

break; 

if (header[j] != '\n') /* 15 */ 

while ( ( ! feof (fin)) && (getc (fin) != '\n')) 

• 



C - A DABHAND GUIDE 

header[j) = '\0'; 

if (strncmp("Return-Path:",header,12) == 0) /* 16 */ 

{ int n = O; 

i++; 

j = 12; 

while (header[j) '<' 11 header[j] \ ') 

j++; 

while (header[j] != '\0' && header[j] != '>') 

return_address[n++] 

return_address[n] 

break; 

'\0'; 

header [ j++ J ; 

if ( (i > oldrressages) && OkayToRerrail (return_ address, oldaddr)) 

sprintf (ccmrand, "/usr/ucb/rrail -s AUTOANSWER %s < %s\n", 

return_address,msg); 

system(corrmand); 

fclose (fin); 

return(i); I* return new number of old messages */ 

/***********************************************************/ 

I* Level 2 */ 

/***********************************************************/ 

• 



39 - SYSTEM PROGRAMMING UNDER UNIX 

OkayToRemail(address,oldaddr) 

char *address; 

char oldaddr[NUMMESGJ [LINELENGTHJ; 

{ int i; 

for (i O; (oldaddr[iJ [OJ != '\0') && (i < NUMMESG) i++) 

if (strcmp(address,oldaddr[iJ) ~ 0) /* 17 */ 

return (false); 

if (strcmp (address, "MAILER-root") 0) 

return (false); 

if ( (st.mtp(ad:lress, ":r:cct:") = 0) 11 (stmip(ad:lress, "daen:n") = 0)) 

return(false); 

if (i < NUMMESG-1) 

strcpy(oldaddr[i++J,address); 

oldaddr[iJ [OJ = '\0'; 

return (true) ; 

I* 18 */ 

/************************************************************/ 

/* Toolkit LOCKS *I 

/************************************************************/ 

Locked() 

{ FILE *lock; 

if ((lock fopen (LOCKFILE, "r")) ! = NULL) 

• 



C - A DABHAND GUIDE 

fprintf(stderr,"Auto Answer Daemon: %s already 

exists!\n",LOCKFILE); 

fprintf(stderr,"Remove lock and try again.\n"); 

fclose(lock); 

return (true); 

if ((lock - fopen (LOCKFILE, "w") ) ! = NULL) 

fprintf (lock, "%d", getpid ()); 

fclose (lock); 

return (false) ; 

fprintf(stderr,"Auto Answer Daemon: Can't open %s.",LOCKFILE); 

return (true); 

/ ************************************************************ 

I 

Unlock() 

if (unlink(LOCKFILE) -1) 

printf("Failed to remove %s\n",LOCKFILE); 

/***********************************************************/ 

HandleSignal () 

/* Here you could put anything to make the program exit 

gracefully *I 

/*e.g. save data ... 

Unlock(); 

exit(O); 

*I 

/************************************************************ 

• 



39 - SYSTEM PROGRAMMING UNDER UNIX 

Note that this daemon uses setruid() to set the 

"real" user id to each successive user that is serviced 

by the program. It must not change "effective uid" 

from root otherwise the program will cease to have 

super user privileges. 

Mail is automatically sent to the superuser in the 

event of error under the uid of "daemon" 

1. SLEEPTIME - this is the time that the 

daemon sleeps in between checking user 

mailboxes 

2. NUMMESG - this is the dimension of the 

array which holds addresses of messages already 

received. Set it to the approximate number of 

messages you expect to receive - it's not a hard 

limit, it just means that the checking algorithm 

won't work 100% ifthe limit is exceeded. 

3. DISKS - Set up your user partitions here - eg 

#define NUMBEROFDISKS 3 

char * DISK [] 

/home/ul, 

/home/u2, 

/home/u3 

4. Fork makes this process split into two. One will 

return 0, the other a non zero number, so the 

original process will exit, while the child 

continues to operate. Later we declare a signal 

handler HandleSignal() and setpgrp which 

isolates the child daemon from terminal signals 

except kill. Thus it runs in the background even 

after logout. 

5. Make sure that only one copy of the daemon is 

allowed to run. Install a lockfile. 

• 



C - A DABHAND GUIDE 

II 

6. Scan through the user areas looking for user 

home directories. Not Excluded allows you to 

have a file /.AUTOANSWER.no access in 

which a list of users to be ignored is placed. This 

should at least contain " ."and " .. "and probably 

"lost+found", "root" etc. 

7. Given the username, get the uid. 

8. Keep a log of addresses which have been replied 

to so that no more than one autoreply is sent. 

Read in the old WORKFILE and check that if it 

doesn't exist, we wipe the array clean for the 

next user . Initialise the arrays with zero first 

anyway. 

9. This is the pure text message file of the user. 

10. Handle reply. 

11. If the user has logged in and deleted some 

messages the work file is erased and everyone 

gets another reply. This isn't fool proof- if the 

user deletes one and one message arrives 

between runs of the daemon, then this won't 

work. The lesson is: don't delete messages if you 

want it to work properly. 

12. Write ammended address log to work file. 

13. Start counting the messages in the users mail 

intray. 

14. Read a line from the file into the buffer. This 

has a finite size so make sure that we skip the 

rest of the line, so that the loop always starts 

from the first character on a line. We are looking 

for a line that starts "Return-Path". This will 

not necessarily be the correct line for all Unix 

systems. 

15. Copy the return address. 



39 - SYSTEM PROGRAMMING UNDER UNIX 

16. Check that we haven't mailed this return 

address before. 

17. This checks we don't exceed the bounds of the 

array with numbers greater than NUMMESG. 

The program therefore continues to work 

without a "segmentation fault". 

Example 2: Wildcards 
Wildcards are characters like * and ? which represent 

arbitrary groups of characters. They are used to 

perform actions on many files simultaneously. For 

example: 

rm * .o 

would remove all files which ended in ".o". There 

are two main wildcards in Unix: * and ? 

* matches any number of characters 

? matches any single character 

so for example, 

*.? 

would match 

anything a 

anything.b 

but not 

anything.ab 

Programming wildcards 
This is a tricky business - something which one 

seldom sees in text books, so let's implement a 

general unix wildcard interpreter, which can be used 

in all manner of situations. 

There is little point in making ordinary shell 

commands out of this program, since the Unix shell 

• 



C - A DABHAND GUIDE 

Listing 

automatically expands wildcards, handling the full 

list of file names to any program invoked by a shell, 

but we can nevertheless illustrate the technique by 

making a generalised file processor which could be 

used in any program, not connected to a shell 

process*.? 

The program looks for a list of arguments and acts 

on them. If there are no arguments it prompts for a 

filename (which may then involve any number of 

wildcards). 

The 'process' part of the program can be left blank 

and filled in later, so you can customise the program 

to your own needs.Once again, use the unix manual 

pages to follow the program through .There are 

comments after the listing, which is annotated.In 

the example listing, the 'process' part does no more 

than to print out the filename of the file concerned, 

verifying that it was correctly identified by the 

wild cards. 

/************************************************************/ 

I* *I 
/* PROCESS FILE LIST for file handling utilities in UNIX */ 

I* and UNIX-like systems */ 

I* *I 
/************************************************************/ 

/* See UNIX rranual (3) DIREc.l'CRY for info aJ:out directo:cy handling *I 
iinclude <stdio.h> 

iinclude <sys/types.h> 

iinclude <sys/dir.h> 

idefine true 1 

idefine false 0 

int QUIET = false; 

• 



39 - SYSfEM PROGRAMMING UNDER UNIX 

/************************************************************/ 

main (argc,argv) 

int argc; 

char *argv []; 

int i; 

DIR *dirp; 

struct direct *file; 

char *filename(); 

CheckOptions(argc,argv); 

if (argc = 1) 

if ( (argv[l] filename()) 

printf ("Aborted\n"); 

else 

argc 2; 

if ( (dirp opendir (". ")) 

NULL) 

NULL) 

printf("System error #1: can't open directory\n"); 

exit(O); 

for (i l; i < argc; i++) 

for (file = readdir (di:rp); file ! = NULL; file = readdir (di:rp)) 

if (argv[i] [0] != '\0' && WildMatch(argv[i],file->d_narre)) 

ProcessFile(file->d_name); 

II 



C - A DABHAND GUIDE 

rewinddir(dirp); 

closedir (dirp) ; 

/***********************************************************/ 

I* Level 1 *I 

/***********************************************************/ 

CheckOptions(argc,argv) 

int argc; 

char *argv [ J; 

/* Uses GLOBAL flags */ 

int i; for (i l; i < argc; i++) 

if (argv[i] (OJ '-') 

if (argv[i] [l] != 'q') 

printf("Invalid option %s - ignored\n",argv[i]); 

exit (0); 

*argv[i] = '\0'; 

QUIET = true; 

/***********************************************************/ 

ProcessFile (f ilenarne) 

char *filename; 

if (!QUIET) 

printf("Processing %s\n",filename); 

• 



39 - SYSTEM PROGRAMMING UNDER UNIX 

/***********************************************************/ 

I* Toolkit INPUT *I 

/***********************************************************/ 

char *filename() 

{ static char *file = " •••••••••••••••••••• • •••••••••••• "; 

printf("Filename or pattern (. to quit): "); 

scanf("%24s",file); 

skipgarb () ; 

if (file[O] '.') 

return(NULL); 

else 

return (file); 

/ ************************************************************/ 

skipgarb() 

while (getchar() != '\n') 

/ ************************************************************! 

/ * WILDCARD TOOLKIT : Level 0 *I 

/************************************************************/ 

ltdefine nomatch 0 

ltdefine match 1 

ltdefine maxlen 20 

ltdefine startofstrings 10 

ltdefine middleofstrings 11 

ltdefine endofstrings 12 

• 



C - A DABHAND GUIDE 

tdefine Wild (c) (c '*' 11 c '?') ? true false 

iinclude <string.h> 

/************************************************************ 

I 

Wilc!Match (wildptr,cmpptr) 

char *wildptr, *cmpptr; 

char buffer[maxlen]; 

char *AfterSubString(); 

int i, status 

char lastwild 

while (true) 

while (*wildptr 

wildptr++; 

cmpptr++; 

startofstrings; 

'\0'; 

'?') /* 1 */ 

if ( (*cmpptr '\0') && (*wildptr != '\0')) /* 2 */ 

return(nomatch); 

lastwild = '?'; 

status middleofstrings; 

if (*wildptr '\0' && *cmpptr '\0') /* 3 *I 

return (match) ; 

else if (*wildptr ' \ 0') /* 4 */ 

return(nomatch); 

if ( *wildptr '*') /* 5 *I 

• 



39 - SYSfEM PROGRAMMING UNDER UNIX 

while (*wildptr == '*') 

wildptr++; 

if (*wildptr == '\0') 

if (*cmpptr == '\0') 

return(nomatch); 

else 

return (match) ; 

cmpptr++; 

status = middleofstrings; 

lastwild '*'; 

I* 6 */ 

I* 7 */ 

/* 8 */ 

I* 9 */ 

for (i = O; ! (Wild(*wilclptr) 11 *wildptr == '\0'); i++)/* 10 */ 

buffer[i] = *wildptr++; 

if (*wildptr == '\0') 

status endofstrings; 

buffer[i] = '\0'; 

/* 11 */ 

if ( <cni:rtr = AfterS.lhString ccnw.r, hlffer, status, lastwild)) = mrL) 

return(nomatch); I* 12 */ 

status middleofstrings; 

• 



C - A DABHAND GUIDE 

/***********************************************************/ 

/* Wildcard Toolkit : Level 1 */ 

!***********************************************************/ 

char *AfterSubString(big,small,status,lastwild) 

/* If the last wildcard was a ? then this just tries to */ 

/* match the substrings from the present position, otherwise*/ 

/* looks for next occurrance of small within big and returns*/ 

/* a pointer to the next character in big after small or*/ 

I* NULL if there is no string found to match */ 

/* If end of strings is signalled, make sure that the string*/ 

/* is tied to the end of big. This makes sure that there is*/ 

/* correct alignment with end of string marker. */ 

char *big,*small; 

int status; 

char lastwild; 

{ char *bigptr; 

if (strlen(small) > strlen(big)) /* 13 */ 

return (NULL); 

if (lastwild '?') /* 14 */ 

if (strncmp(big,small,strlen(small)) 0) 

return(big+strlen(small)); 

else 

return (NULL) ; 

if (status endofstrings) /* 15 */ 

II 



39 - SYSTEM PROGRAMMING UNDER UNIX 

big= big+ strlen(big) - strlen(small); 

for (bigptr = big; *bigptr != '\0'; ++bigptr) /* 16 */ 

if (strncmp(bigptr,small,strlen(small)) 0) 

return(bigptr+strlen(small)); 

if (status startof strings) I* 17 */ 

return (NULL) ; 

return (NULL); /* 18 */ 

/************************************************************ 

Comments: 
1. ? Matches a single character . Skip over with 

pointers. 

2. Check that the compare string hasn't run out 

too soon. 

3. If the wild-match is complete return MATCH! 

4 . other wise check that the wild card string hasn't 
run out too soon . 

5. * Matches any string. 

6. Skip over any *'sin the wildcard string and leave 

pointer on the first character after. 

7. If the last character in the wildstring is *, match 

any remaining characters .. 

8. . .. except no string at all . e .g . xyz* doesn't 

match xyz 

• 



C - A DABHAND GUIDE 

• 

9. Advancing this pointer by one, prevents * from 

matching the null string even when the pointers 

haven't reached the end of the string (so that 

the match is not complete) . This works because 

it screws up the pattern match in the routine 

'AfterSubString()' by removing the first 

character from a string which might otherwise 

match . e.g. it stops* .c from matching .c because 

the strings which get passed to AfterSubString 

are 'c' (from * .c) and 'c' (from .c). 

10. Isolate the next string sandwiched between wild­

cards or string delimiters. Copy to buffer. 

11. Make a note if we hit the end of wildstring in 

the process. i.e. is this the end of the strings 

we're matching? 

12. The call to this routine checks whether a match 

is allowed between the isolated string and the 

comparison string. If a match is allowed it 

updates the pointers so that they point to the 

next characters after the match . Otherwise it 

returns NULL.AfterSubString() 

13. You can't find a string larger than big inside big! 

(This could occur because of points 15 . and 9.) 

14. If the last wildcard was just to match a single 

character then the string match must be 

anchored to the current pointer locations. 

15. If this is the end of the strings to be matched, 

then make sure the match also correctly 

identifies which pattern matches the END of the 

string . e .g . to avoid confusion over * .abc in 

.abc.abc.abc 

16. If the last wildcard was a * or none, then use a 

forward floating comparison which can skip over 



39 - SYSTEM PROGRAMMING UNDER UNIX 

any junk characters looking for the next 

occurrance of the string. 

17. If this is the first two characters in the string 

and there is no match, give up. This anchors the 

floating match to the start to avoid a *b 

matching xaxb by skipping over the first x! 

18. If there is no match yet, there's no chance! 

Test Data 

Wild String 

abed 

*mmm* 

*j 

*.c 

*y 

?a 

? ? ?a 

??? 

* 

* * 

a* 

?mmm? 

Valid Match 

abed 

abcmmmabc 

JJJJ 

a.c 

.c.c 

ayyyyyyy 

aa 

ba 

aaaa 

xyza 

xyz 

anything 

anything.anything 

abc 

ammmb 

No Match 

abcmmm 

mmm 

jjjjx 

.c 

ya 

y 

aaa 

ab 

ab 

xyzaa 

ab 

abed 

a 

bad 

abcmmmd 

• 



C - A DABHAND GUIDE 

II 

a*b axyzb 

abbb 

mmm 

xyz 

axab 

************************************/ 



a Style Notes 

Levels, Zones and Toolkits 
A computer program is like a tree, branching out, 

becoming ever more complex. A program starts 

from a certain place, called the main program, and 

branches out into subroutines, which in turn branch 

into more subroutines and so on. This creates a 

structure which has a number of levels: 

Level 0 

Level 1 

Level 3 

main () 

I \ 
subl( ) 

I \ 
sub2( ) 

I \ 

A convenient way of grouping functions in a C 

program is in levels like these. A program then 

consists of one main procedure at LEVEL 0, which 

branches out into a new level called LEVEL 1. 



C - A DABHAND GUIDE 

II 

LEVEL 1 contains all the procedures which are used 

in LEVEL 0. All the procedures used in LEVEL 1 

are found in LEVEL 2 and so on until there are no 

more procedures left. It is not possible for programs 

written in C with a normal screen editor to look 

exactly like this structure diagram, but they can 

retain the essential features . The structure diagram 

can be squashed sideways so that the levels are 

preserved and the functions are listed, one after the 

other, inside their respective levels. This shows, at 

least, the status of every procedure in the tree and 

means that procedures can be found very easily. Any 

procedure which is called in LEVEL 1 would be 

found in LEVEL 2 and conversely any procedure 

defined in LEVEL 2 would only have been called in 

LEVEL 1. 

What happens to procedures which are used 

throughout all the levels, such as special printing 

routines or graphics routines to draw certain shapes? 

The key to this lies in the re-usability of these 

routines. They are routines of a very genernl nature, 

which behave as basic tools for the main procedures. 

This motivates their inclusion in a special level, or 

set of levels called toolkits. A good reason for doing 

this is that toolkit routines are a type of routines 

which come to be needed again and again, in many 

different programs perhaps, and can subsequently be 
isolated and re-used. Toolkits automatically result in 

routine libraries, some of which hold details relating 

to particular computers only. Programs constructed 

in this way are highly portable, since it should only 

be necessary to replace a toolkit when carrying a 

program over to another system. 

In a sense, this method is a way of making "oblect 

oriented" programs from C, which is not specifically 

and object-oriented language . 



Nesting 
When statements or loops are nested, they are 

indented for every loop so that the extent of nesting 

clear. A strict policy is important here too, to keep 

programs clear. In all the programs in this book the 

method: 

for (n=l; n <= 10; n++) 

while ( a < b ) 

{ 

printf (" ... "); 

printf (" ... "); 

printf (" .... "); 

is used in preference to: 
for ( n=l; n <= 10; n++) 

while (a < b) { 

A - STYLE NOTES 

printf (" .... ");printf (" ... "); } 

• 



C - A DABHAND GUIDE 

II 



Compiler 
Variations 

This appendix may be ignored by readers who have 

never used C before and are using only one 

compiler. It outlines the way compilers differ. 

C has undergone various stages of development and 

improvement. One notable development was the 

creation of a new super C language called C++ by 

Bjarne Stroustrup, which means C incremented, in 

'selve spraaket'! Newer versions of the C compiler 

tend to support more lavish operations than older 

ones, and in particular possess new pre-defined data­

types, called void and enum, const and volatile, 

which have been imported from C++. The following 

list items summarises the possible differences 

between a modern compiler and an older one. This 

book assumes that all of the new features are allowed 



C - A DABHAND GUIDE 

• 

by its compiler. Details of how to use these 

constructs are given in the relevant chapter. 

New Data Types 
void This implies no value at all and is used 

for returning from functions without 

passing a value 

en um 

const 

volatile 

Enumerated or abstract types. This gives 

C facilities a bit like the abstract types of 

Pascal, though C's version of these is 

more concrete and user-controllable and 

so more 'primitive' 

For naming constant expressions 

For data which can be altered by 

agencies outside a program 

Aggregate Assignment 
An 'aggregate' data type is a 'structure' union or 

enum. These types are ways of holding several items 

of data in a single 'package' for convenience. They 

are not like arrays, however. Older compilers placed 

severe restrictions upon what could be done with 

structures and unions. Essentially, the only things 

that could be done were to obtain the address of an 

aggregate type variable and to assign and read the 

values of the data spaces within . Only the locations 

of aggregates could be passed as parameters to 

functions. Modern compilers lift these restrictions 

and make aggregate types worth their weight in 

silicon. It is now possible to do the following: 

I) Assign structures and unions of identical type to 

one another as a single unit 



B - COMPILER VARIATIONS 

2) whole structures and unions can be passed as 

value parameters. This means that the receiving 

function makes a copy of the aggregate which is 

used until the end of that function 

3) Functions can return whole aggregates by value. 

This is in contrast to ISO Pascal too 

Miscellaneous 
The $ symbol may, or may not, be allowed m 

identifiers. Check your manual for details. 

Some implementations do not allow assignments to 

be made when declaring variables. For example, inti 

= O; 

The storage class 'register' may not be supported on 

some systems, since it is a machine dependent 

feature. 

Some compilers don 't care whether you use integer 

constants ( eg. 1) for floating point constants ( eg. 

1.0), whilst others will generate erroneous answers. 

II 



C - A DABHAND GUIDE 

• 



II Conversions 



C - A DABHAND GUIDE 

Decimal Octal Hex Character 

14 16 E CTRL-N 
15 17 F CTRL-0 
16 20 10 CTRL-P 
17 21 11 CTRL-Q 
18 22 12 CTRL-R 
19 23 13 CTRL-S 
20 24 14 CTRL-T 
21 25 15 CTRL-U 
22 26 16 CTRL-V 
23 27 17 CTRL-W 
24 30 18 CTRL-X 
25 31 19 CTRL-Y 
26 32 lA CTRL-Z 
27 33 lB CTRL-[ 
28 34 lC CTRL-\ 
29 35 lD CTRL-] 
30 36 lE CTRL-" 
31 37 lF CTRL--
32 40 20 
33 41 21 
34 42 22 " 
35 43 23 # 

36 44 24 $ 

37 45 25 % 

38 46 26 & 
39 47 27 
40 50 28 ( 
41 51 29 ) 
42 52 2A * 
43 53 2B + 

44 54 2C 
45 55 2D 
46 56 2E 
47 57 2F I 
48 60 30 0 

II 



C - CONVERSIONS 

Decimal Octal Hex Character 

49 61 31 1 
50 62 32 2 
51 63 33 3 
52 64 34 4 
53 65 35 5 
54 66 36 6 
55 67 37 7 
56 70 38 8 
57 71 39 9 
58 72 3A 
59 73 3B 
60 74 3C < 

61 75 3D 
62 76 3E > 

63 77 3F 
64 10 40 @ 

65 101 41 A 
66 102 42 B 
67 103 43 c 
68 104 44 D 
69 105 45 E 
70 106 46 F 
71 107 47 G 

72 110 48 H 

73 111 49 I 

74 112 4A J 
75 113 4B K 

76 114 4C L 

77 115 4D M 

78 116 4E N 

79 117 4F 0 
80 120 50 p 

81 121 51 Q 
82 122 52 R 

83 123 53 s 

II 



C - A DABHAND GUIDE 

Decimal Octal Hex Character 

84 124 S4 T 

8S 12S SS u 
86 126 S6 v 
87 127 S7 w 
88 130 S8 x 
89 131 S9 y 

90 132 SA z 
91 133 SB [ 
92 134 SC \ 
93 13S SD ] 
94 136 SE II 

9S 137 SF 
96 140 60 
97 141 61 a 
98 142 62 b 
99 143 63 c 

100 144 64 d 
101 14S 6S e 
102 146 66 f 

103 147 67 g 
104 lSO 68 h 

lOS lSl 69 
106 1S2 6A J 
107 1S3 6B k 
108 1S4 6C 
109 lSS 6D m 

110 1S6 6E n 

111 1S7 6F 0 

112 160 70 p 
113 161 71 q 
114 162 72 r 

llS 163 73 s 

116 164 74 t 

117 16S 7S u 

118 166 76 v 

II 



C - CONVERSIONS 

Decimal Octal Hex Character 

119 167 77 w 

120 170 78 x 

121 171 79 y 

122 172 7A z 

123 173 7B 
124 174 7C 
125 175 7D 
126 176 7E 
127 177 7F DEL 

• 



C - A DABHAND GUIDE 

• 



Answers to 
Questions 

Chapter 1 
1) A tool which translates high-level language into 

machine language 

2) By typing the name of an executable file 

3) By typing something like 'cc filename' 

4) No! 

5) Compiler errors and runtime errors 

Chapter 3 
1) printf ("Wow big deal"); 

2) printf ("22"); 

• 



C - A DABHAND GUIDE 

• 

3) printf ("The 3 wise men"); 

printf ("The o/od wise men" ,3); 

4) Most facilities are held in libraries 

Chapter 4 
1) To provide a basic set of facilities to the user 

2) The filename used by a computer to reference a 

device 

3) accounts.c 

4) accounts.x (or perhaps accounts.EXE) 

5) By typing the name in 4 

Chapter 5 
1) #include <filename> or #include "filename" 

2) stdio.h 

3) No. Only macro names can be used if the 

header file is not included 

4) Header file 

Chapter 7 
1) A group of statements enclosed by curly braces ( ) 

2) Comments, pre-processor commands, functions, 

declarations, variables, statements. This is a 

matter of opinion, of course! 

3) Not necessarily. It starts wherever main() is 

4) It signifies the end of a block, the return of 

control to somethng else 

5) The semi-colon(;) 



D - ANSWERS TO QUESfIONS 

Chapter 8 
1) The compiler thinks the rest of the program is 

all one comment! 

Chapter 9 
1) 

function (a,b) 

int a,b; 

return (a*b); 

2) No 

3) The value is discarded 

4) The result is garbage 

5) By using 'return' 

Chapter 10 
1) A name for some variable, function or macro 

2) a,c,f 

3) int i,j; 

4) double is twice the length of float and can hold 

significantly larger values 

5) int can have values +or-. Unsigned can only be 

+ and can hold slightly larger + values than int 

6) I= 67; 

7) int 

8) At the function definition and in the calling 

function 

• 



C - A DABHAND GUIDE 

• 

9) printf ("%d" ,(int)23.1256); 

10) No 

Chapter 11 
1) With variable parameters or with return() 

2) Where a function is defined, after its name: For 

example: 

function ( ... ) 

<-here 

3) Yes 

4) No, and it is illegal 

5) * means 'the contents or and & means 'the 

address of 

6) No 

Chapter 12 
1) A global variable can be accessed by any part of 

a program 

2) A local variable can only be accessed by a select 

part of a program 

3) Local variables cannot leak out. Nothing outside 

them can reach local variables 

4) Variable parameters do. Value parameters use 

their own local copies, so they do not 

5) 

int i,j; 

main () 



D - ANSWERS TO QUESTIONS 

{ float x,y; 

another(x,y); 

another(x,y) 

float x,y; 

There are six storage spaces altogether 

Chapter 13 
1) #define birthday 19 

2) #include <math.h> 

3) false 

4) false 

Chapter 14 
1) A variable which holds the address of another 

variable 

2) With a * character. For example, int *i 

3) Any type at all! 

4) doubleptr =(double *)chptr 

5) Because number has not been initialised. This 

expression initialises the place that number 

points to, not number itself. (See main text) 

Chapter 15 
printf 

1) 

#include <stdio.h> 

• 



C - A DAB HAND GUIDE 

• 

main () 

printf ("%2e",6.23); 

2) This depends on individual compilers 

3) a. No conversion string 

b. Conversion string without matching value 

c. Probably nothing 

d . Conversion string without matching value 

scant 

1) space, newline or tab 

5) true. 

Low-level 1/0 

1) The statement is possible provided putchar() is 

not implemented as a macro. It copies the input 

to the output: a simple way of writing on the 

screen . Note, however, that the output is 

buffered so characters may not be seen on the 

output for some time! 

2) ch = getchar(); 

putchar (ch); 

Chapter 16 
1) The thing(s) an operator acts upon 

2) printf ("%d",5 % 2); 

3) rem= 5 % 2; 

4) variable = 10 - -5; 

5) 

if (1 != 23) 

{ 



D - ANSWERS TO QUESllONS 

printf ("Thank goodness for mathematics"); 

Chapter 18 
1) Three : while, do ... while, for 

2) while : at the start of each loop 

do : at the end of each loop 

for : at the start of each loop 

3) do ... while 

4) 

#include <stdio.h> 

#define true 1 

main () 

{ char ch; 

while (true) 

ch= getchar(); 

putchar (ch) ; 

Chapter 19 
1) The array identifier (without square brackets) is 

a pointer to the first element in the array 

2) You pass the array identifier, without square 

brackets. No! Arrays are always variable 

parameters 

3) double array[4][5]; 

Valid array bounds from array[O][O] to 

array[ 3 ][ 4] 

• 



C - A DABHAND GUIDE 

• 

Chapter 20 
1) Arrays of characters. Pointers to arrays of 

characters 

2) static char *strings[]; 

Could then initialise with braces ( ) and item 

list . (See main text) 

3) See the Morse code example 

Chapter 21 
1) double 

2) Probably true. This is implementation 

dependent. The actual types are double, long 

float and int 

3) The length ofa string (excluding NULL byte) 

4) Joins two strings 

5) Overflow, underflow, domain error, Loss of 

accuracy and division by zero 

Chapter 22 
1) ++, - and any assignment or unary operator 

2) It could make a program too difficult to read 

3) No. The function would return before the value 

could be incremented 

Chapter 23 
1) FILE is defined by stdio.h. It is reserved only 

when this file is included. It is not a built in part 

of the language 

2) FILE *fP; 



D - ANSWERS TO QUESTIONS 

3) False. They are meant for comparitive purposes 

only. It does not make sense to do arithmetic 

with enumerated data 

4) Yes. It provides a generic pointer, that is one 

which can be assigned to any other pointer type 

5) volatile 

6) typedef double real; 

7) True 

Chapter 24 
1) Nothing - only the way it is used . Yes, every 

variable is a bit pattern. It is normal to use 

integer or character types for bit patterns 

2) Inclusive OR is true if all possiblilities are true 

simultaneously.Exclusive OR is false if all 

possibilites are true simultaneously 

3) Some kind of flag message perhaps. A bit pattern 

for certain 

4) a. 00000111 & 00000010 == 00000010 == 2 

b. 00000001 & 00000001 == 00000001 == 1 

c. 00001111 & 00000011 == 00000011 == 3 

d. 00001111 & 00000111 == 00000111 == 7 

e. 00001111 & 00000111 & 00000011 == 00000011 = 3 

5) a. 00000001 I 00000010 == 00000011 == 3 

b. 00000001 I 00000010 I 00000011 == 00000011 == 3 

6) a. 1 & (-1) == 00000001 & 11111110 == 0 

b. 23 & -23 == 00011111 & 11100000 == 0 

c. similarly 0: n & (NOT n) is always zero 

• 



C - A DABHAND GlTIDE 

• 

Chapter 25 
1) a. A string which labels a file 

b. A variable of type *fP which points to a FILE 

structure 

c. The number of a file "portal" in the I/O 

array 

2) High-level filing performs translations to text. 

Low-level files untranslated bit data 

3) £P = fopen ("filename" ,"r"); 

4) fd =open ("filename'',O_WRONLY); 

6) fprintf() 

Chapter 26 
1) A structure can hold several values at the same 

time. A union holds only one value at any one 

time 

2) A part of a structure, or a possible occupant of a 

um on 

3) x.mem 

4) ptr->mem 

5) False 

Chapter 27 
1) A diagram which shows how structures are put 

together 

2) With pointers 

3) False . Pointers are used to reference variables 

and data structures are built in such a way as to 

require only one name for a whole structure 

4) With pointers. ptr->member and so on 



D - ANSWERS TO QUESI10NS 

5) ptr=(struct Binary Tree *)malloc(sizeof(struct 

Binary Tree)); 

Chapter 28 
1) A function which is defined in terms of itself 

2) A data structure run by the C language for 

keeping track of function calls and for storing 

local data 

3) A lot of memory is used as stack space 

Chapter 31 
1) Declarations are in the wrong place 

2) Missing closing brace ) 

3) Missing semi-colon after closing brace );; 

• 



C - A DABHAND GUIDE 

II 



II Programs Disc 

A disc of programs is available from Dabs Press, 

containing all the programs listed in this book plus 

several others - over 50 in total including an 

adventure game, telephone bill utility, a window 

graphics program and an automatic cross­

referencing index generator. 

The programs are available on discs for the following 

micros: 

Acorn Archimedes 

Commodore Amiga 

PCs (two discs) 

In all instances, both the source and the compiled 

object code is provided thus allowing the original 

programs to be run immediately or edited to suit 

individual needs as may be required. 



C - A DAB HAND GUIDE 

• 

The disc comes supplied with it own manual which 

documents"how to use the files on the disc, and 

gives more extensive user notes on running the extra 

programs . The cost is £9.95 inclusive for each 

version. 

The programs disc is available directly from Dabs 

Press, and you will find a cut-out order form at the 

very end of this book which may be used if needed. 

Alternatively, please simply list details in a similar 

format on a sheet of paper. Cheques and postal 

orders should be made payable to 'Dabs Press' and 

sent to the address given. 

Brief details of three of the extra programs are listed 

below. 

Telephone Bill Program 
Utility 
The telephone example is a complete application 

program utility, written in portable C, which can be 

used to keep accurate records of phone calls made 

by partners sharing a phone line, or network, and 

accurately calculate the bill for a quarter! 

The program is menu driven and provides the 

following options: 

1 : Edit Defaults 

2 : Charge Sheet 

3 : Print Log Sheet 

4 : Bill Calculator 

q: Quit 

The program caters for local, long distance and 

international calls. Bills may be loaded, saved and 

edited required and printed out . 



Adventure Game 
The adventure game is a simple game designed to 

show how C can be used to write programs which 

are split up into many files. The source code of the 

game consists of eight separate files . The main file 

contains the logical program code for the game. The 

remaining files contain the data and ancillary 

definitions for the program. In principle, it should 

be possible to solve the game by reading the source 

code of the program. 

Index Generator V1.2 
Index Generator is a utility program which you to 

create formatted indices from your own source data . 

Raw index data, consisting of words/phrases and 

page numbers, are arranged in alphabetical order 

and the relevant page numbers are ordered and 

formatted on screen. Index Generator provides the 

option to cross reference entries in an index and to 

merge several files of index data into one. 

The resulting formatted information may be saved as 

a formatted ASCII file, for merging with 

wordprocessor documents, or printed out. The 

current version of Index Generator generates the 

Dabs index format, as used in the accompanying 

book. 

The formatted output of the program may be sent 

to an ASCII file for merging with documents, or 

may be viewed on the screen. 

Data can be entered into the program in either of 

two ways. Perhaps the simplest way is to use a 

wordprocessor as a kind of scratch pad for making 

index notes. Alternatively, data can be entered is via 

the update editor provided by the program. 

E - PROGRAMS DISC 

• 



C - A DABHAND GUIDE 

• 



II Dabhand 
guides 

Dabhand Guide Books 
The following Dabhand Guides and software packs 

are now available. All quoted prices are inclusive of 

VAT on software, (books are zero-rated), and 

postage and packing. 

Also by Mark Burgess, author of C: A Dabhand 

Guide - 1st, 2nd & 3rd Editions: 

AmigaDOS: A Dabhand Guide 
ISBN 1-870336-47-X 

270 pages 

Price : £14.95 

• 



C - A DAB HAND GUIDE 

II 

The complete and comprehensive guide to 

AmigaDOS for the user of the Commodore Amiga. 

This book provides a unique perspective on the 

Amiga's powerful operating system in a way which 

will be welcomed by the beginner and experienced 

user alike. Rather than simply reiterating the Amiga 

manual, this book is a genuinely different approach 

to understanding and using the Amiga. 

Just some of the topics covered include: filing with 

and without the workbench, the hierachical filing 

system, pathnames and device names, multi-tasking 

and its capabilities, The AmigaDOS screen editor, 

AmigaDOS commands, batch processing, error 

codes and descriptions, creating system discs, 

recovering damaged discs and using AmigaDOS 

with c. 

Simply a must for all Amiga owners and users! 

Amiga Basic: A Dabhand Guide 
by Paul Fellows 

ISBN 1-870336-87-9 

560 pages 

Price: £15.95 

A fully structured tutorial to using AmigaBASIC on 

the whole range of Commodore Amiga computers. 

Many practical applications provide useful and 

informative programming techniques. No prior 

knowledge of BASIC required. A graphical theme is 

applied to the many examples in the book so that 

the techniques described are visually reinforced. 

An indispensable reference to any AmigaBASIC 

programmer. 



WordStar 1512: A Dabhand Guide 
Including WordStar Express 

by Bruce Smith 

ISBN 1-870336-17-8 

240 pages 

Book: £12 .95 . Disc: 5.25in, £7.95; book and disc 

together, £17.95 

A comprehensive tutorial and reference guide to 

WordStar 1512 and WordStar Express. The many 

features of this book include rulers, margins, copy, 

move, delete, dot commands, page layout, spelling 

checker, mail-merge, using printers, RAM discs, and 

Boost. Many screen dumps provide visual 

reinforcement. 

VIEW: A Dabhand Guide 
by Bruce Smith 

ISBN 1-870336-00-3 

248 pages 

Book: £12.95. Disc: DFS 5.25in, £7.95 ADFS; 

3.5in, £9.95. Book and disc together, £17.95 

(ADFS £19.95) 

The most comprehensive tutorial and reference 

guide written about using the VIEW wordprocessor. 

Both the beginner, and the more advanced user, will 

find it to be an invaluable companion whether 

writing a simple letter or undertaking a thesis. In 

addition, a suite of VIEW utility programs are 

provided, including: VIEW Manager, an easily 

extendable front end . Thorny subjects such as 

macros, page layout and printer drivers are revealed. 

F - DABHAND GUIDES 



C - A DABHAND GUIDE 

.I"'"---

Mini Office II: A Dabhand Guide 
By Bruce Smith & Robin Burton 

ISBN 1-870336-55-0 

256 pages 

Price: £9.95 

Official tutorial and reference guide to the award 

winning Mini Office II software. Covers everyday 

use of all modules. Featuring file management, the 

wordprocessor, mail merging, the label printer, the 

database, the spreadsheet, graphics, communication, 

and MiniDriver. 

Master Operating System: A 
Dabhand Guide 
by David Atherton 

ISBN 1-870336-01-1 

272 pages 

Book: £12.95. Disc: DFS 5.25in, £7.95 ADFS; 
3.5in, £9.95. Book and disc together, £17 .95 
(ADFS £19.95) 

The definitive reference work for programmers of 

the BBC Model B+, Master 128 and Master 

Compact computers. 

Archimedes Assembly Language: A 
Dabhand Guide 
By Mike Ginns 

ISBN 1-870336-20-8 

368 pages 

Book : £14.95. 3.5" disc, £9.95 . Book and disc 

together, £21.95 



Get the most from your Archimedes micro by 

programming directly in the machine's own 

language - machine code . This book covers all 

aspects of machine code/assembler programming 

for all Archimedes machines. 

There is a beginner's section which takes the reader 

step by step through topics such as binary numbers, 

and logic operations. 

To make the transition from BASIC to machine 

code as painless as possible, the book contains a 

sect~on on implementing BASIC commands in 

machine code. All of the most useful BASIC 

statements are covered. 

Archimedes Operating System: A 
Dabhand Guide 
By Alex and Nick van Someren 

ISBN: 1-870336-48-8 

320 pages approx 

Price: £14 .95. 3.5in disc, £9 .95. Book a~d disc 

together, £21.95 

The book that is a must for every serious 

Archimedes owner. It describes how the Archimedes 

works and examines the ARTHUR operating system 

in microscopic detail, giving the programmer a real 

insight into getting the best from the Archimedes. 

For the serious machine code, or BASIC, 

programmer included are sections on: the ARM 

instruction set, SWis, graphics, Writing relocatable 

modules, vectors, compiled code, MEMC, VIDC, 

IOC and much more. 

F - DABHAND GUIDES 

• 



C - A DABHAND GUIDE 

• 

Basic V: A Dabhand Guide 
By Mike Williams 

ISBN 1-870336-75-5 

128 pages 

Price: £9.95 

A practical guide to programming .in BASIC Von 

the Acorn Archimedes. Assuming a familiarity with 

the BBC BASIC language in general, it describes the 

many new commands offered by BASIC V. 

Archimedes First Steps: A Dabhand 
Guide 
By Anne Rooney 

ISBN 1-870336-73-9 

240 pages 

Price: £9.95 

An introductory guide to the Archimedes, to guide 

you through those first few months of ownership. 

The Welcome Discs contain a wide range of useful 

programs which are fully documented. The book 

also goes further, to describe software and hardware 

additions to the Archimedes, how to choose and 

install them. 

Budget DTP: A Dabhand Guide 
by Roger Amos 

ISBN 1-870336-11-9 

222 pages 

Price: £12.95 



Every Archimedes and BBC A3000 owner receives 

copies of the !Draw and !Edit software, with RISC 

OS operating software. This book shows how these 

applications can be used to produce high-quality 

documents without the need for an expensive 

desktop publishing package. 

SuperCalc 3: A Dabhand Guide 
by Dr. A. A. Berk 

ISBN 1-870336-65-8 

240 pages 

Price: £14.95 

A complete tutorial and reference guide for one of 

the most popular pieces of software of all time -

SuperCalc spreadsheet for the Amstrad PC1512, 

1640 and other PC-compatibles. It will appeal to 

both the beginner and the more experienced user 

and covers every aspect of setting up, using and 

applying the spreadsheet. 

Master 512 Technical Guide: A 
Dabhand Guide 
by Robin Burton 

ISBN 1-870336-80-1 

417 pages 

Price: £14.95 

The definitive hardware and software reference for 

the dedicated users of the Master 512, Acorn's PC­

compatible upgrade for BBC and Master computers . 

F - DABHAND GUIDES 

• 



C - A DABHAND GUIDE 

• 

Master 512 User Guide: A Dabhand 
Guide 
by Chris Snee 

ISBN 1-870336-14-3 

224 pages 

Book: £14.95 Disc £7.95. Book and disc £19.95 

(£21.95 3.5") 

The most significant tutorial and reference guide for 

the Master 512. 

Here is a list of just some of the topics that are 

covered in the book: what you get on the discs, 

DOS Plus versions, explanation of the filing system, 

DOS Plus CLI commands (syntax, abbreviations 

and errors), transient commands, file types, reserved 

extentions, reserved words, I/O, the 512 memory 

map, how a PC works, 8086 registers, MS-DOS, 

512 Tube, the 80186 monitor, differences between 

DOS Plus and MS-DOS, making software work on 

the 512, colour limitations, hard disc set-up, PC 

disc formats, software compatibility, public domain 

software ... 

Windows, A User's Guide: A 
Dabhand Guide 
By Ian Sinclair 

ISBN 1-870336-63-1 

396 pages 

Price: £14.95 

A comprehensive guide to Microsoft Windows™ for 

the IBM PC and compatibles. This user's guide 

gives simple step by step instructions for new user's, 



and is packed with hints and tips that show even 

experienced users how to get top performance from 

their software. Also shows how to get your favourite 

non-Windows programs up and running under 

Windows. 

Psion LZ, A User's Guide to OPL: A 
Dabhand Guide 
By Ian Sinclair 

ISBN 1-870336-92-5 

224 pages 

Price: £12 .95 

Enjoy better understanding and complete command 

of your Psion LZ with this guide . Includes a 

comprehensive guide to all the built in programs as 

well as the OPL programming language. 

Z88: A Dab hand Guide 

By Trinity Concepts 

ISBN 1-870336-60-7 

296 pages 

Price £14 .95 

An indispensable guide for all users of the Z88 

portable computer. It covers all the standard built in 

application programs with clear explanations and 

easy to follow examples. No previous knowledge is 

assumed in this book which covers topics such as 

PipeDream, The Filer, printing, EPROM and RAM 

cartridges, machine expansion, file transfer, modem 

communications and an introduction to BBC 

BASIC. 

F - DABHAND GUIDES 

• 



C - A DAB HAND GUIDE 

• 

Z88 Pipedream: A Dabhand Guide 
By John Allen 

ISBN 1-870336-61-5 

240 pages 

Price: £14.95 

A definitive guide to PipeDream, the revolutionary 

integrated business software package on the 

Cambridge Computer Z88 portable computer. No 

prior knowledge is assumed. 

Forthcoming Summer/ Autumn 
Books for 1992 
The Amstrad PCW Series: A Dabhand Guide 

By John Atherton 

ISBN 1-870336-50-X. 

Ability Plus: A Dabhand Guide 

by Geoff Cox 

ISBN 1-870336-51-8 

Wordstar 6: A Dabhand Guide 

By Geoff Cox 

ISBN 1-870336-88-7 

Basic on the PC: A Dabhand Guide 

By Geoff Cox 

ISBN 1-870336-96-8 

Windows 3.1: A Dabhand Guide 

By Jon Mountfort 

ISBN 1-870336-66-6 



Impression: A Dabhand Guide 

By Anne Rooney 

ISBN 1-870336-10-0 

Mastering First Word Plus: A Dabhand Guide 

By Anne Rooney 

ISBN 1-870336-18-6 

Basic Wimp Programming: A Dabhand Guide 

By Alan Senior 

ISBN 1-870336-53-4 

Psion Series 3: A Dabhand Guide 

By Patrick Hall 

ISBN 1-870336-97-6 

Software available from Dabs Press 
FingerPrint by David Spencer for the BBC and 
Master Micros 

Disc & manual , DFS version, £9.95, ADFS version, 

£11.95 

A unique single-step machine code tracing program 

allowing you to step through any machine code 

program. FingerPrint will even trace code situated in 

Sideways RAM/ROM - learn how BASIC works! 

MOS Plus by David Spencer for BBC Master 128 

ROM, £12.9; Disc for Sideways RAM, £7.95 (3.5in, 

£9.95) 

Provides ADFS *FORMAT, *VERIFY, *BACKUP, 

*CATALL and *EXALL in ROM and new * 

commands such as *FIND - which finds a file 

anywhere on an ADFS disc. A complete alarm 

system is present using the Master 128 alarm facility, 

F - DABHAND GUIDES 

• 



C - A DABHAND GUIDE 

• 

as is an AMX mouse driver. The ROM also fixes the 

infamous DFS *CLOSE bug. 

SideWriter by Mike Ginns for BBC and Master 

with Sideways RAM 

5.25in DFS disc, £7.95, 3.5in ADFS disc, £9 .95 

A pop-up notepad which can be used from within 

any application from Sideways RAM. Simply press 

SHIFT-CTRL-TAB and your program is suspended, 

and you're in SideWriter ready to make a note. Press 

TAB and you're back with your application screen 

exactly as you left it. Notes taken in SideWriter can 

be saved to disc, transferred to a wordprocessor, or 

printed out. 

Master Emulation ROM by David Spencer for BBC 

B/B+ 

ISBN 1-870336-23-2 Available Now 

Software pack in ROM, £19 .95 (disc for Sideways 

RAM, £14.95) 

Provides model B and B+ owners with most of the 

features of the Master 128, such as the new * 

commands, the extended filing system operations 

including the temporary filing system, the 

*CONFIGURE system (using battery-backed 

Sideways RAM and/or a disc file), and if you have 

the hardware, Sideways or Shadow RAM. The only 

Master Operating System software not covered in 

this ROM, is the extended graphics software. Works 

with all popular SRAM boards. 

HyperDriver by Robin Burton for BBC and Master 
Micros 

Software pack in ROM, £29.95. Sideways RAM 

version, only £24.95 



HyperDriver isn't just another printer ROM - it's 

the ultimate one. And if you have a printer, then 

HyperDriver will be the most significant purchase 

you can make . It's absurdly easy to use and provides 

you with many of the facilities missing from your 

current software including: on-screen preview, CRT 

graphics, NLQ font and user-definable macros to 

name but a few. No matter what you use your 

printer for, wordprocessing, spreadsheets, databases, 

programming you will have in excess of 80, yes 80!, 

* commands available for instant use from within 

applications such as VIEW, InterWord and so on. 

Thus, commands can be embedded within text, 

spreadsheets etc. 

HyperDriver provides a full preview facilty so that 

you can see what will be printed on screen. The 

effects of all HyperDriver commands are displayed, 

for instance, italics, double height, bold, condensed, 

super and subscript, underlined and so on . 

HyperDriver is fully Epson-compatible. 

HyperDriver's macro command facility allows you to 

add your own HyperDriver commands so that 

effects present on new realeases of printer, eg, NLQ, 

double height and so on, can be added with the 

minimum of fuss. 

The HyperDriver pack contains a 16k EPROM for 

permanent internal fitting to the micro, and a 

Sideways RAM image on disc. The disc also contains 

sample programs and files for ease of use and 

reference. A full and comprehensive 100-page 

manual and reference card complete this value for 

money package 

The inbuilt NLQ font allows printers that do not 

have an inbuilt NLQ font to produce text of this 

standard, and provides printers that do have the 

F - DABHAND GUIDES 

• 



C - A DABHAND GUIDE 

• 

capability with an extra NLQ typeface. CRT 

graphics handling and an integral VIEW driver are 

included. 

HyperDriver is supplied in ROM format The 

accompanying disc contains a Sideways RAM version 

of HyperDriver plus numerous examples. The 

comprehensive 100-page manual ensures that you 

get the most from the product. 

Please note: 
All future publications are in an advanced state of 

preparation. We reserve the right to alter and adapt 

them without notification. If you would like more 

information about Dabs Press, books and software, 

then drop us a line at 22 WarWick Street, Prestwich, 

M25 7HN Dabhand Guides Guide . 



Glossary of 
Terms 

ACTUAL PARAMETER: See argument. 

ADDRESS: A number which tells the computer 

(or the programmer!), the exact location of a single 

byte of data in memory. 

AGGREGATE: A cluster of variables which is 

given a single name . Each variable is called a 

member of the aggregate, and is accessed with 

' .member' or '->member'. The two aggregates 

supported by C are called struct( ures) and union( s). 

ALGORITHM: The name given to a programme 

of tasks is an algorithm. This is the part ofa program 

which does the manipulation. It does not concern 

the way in which data is stored. 



C - A DABHAND GUIDE 

• 

ARGUMENT: A variable or a value (number) 

which is passed to a 

function. For instance if function(a,b) is a function, 

then this function takes two arguments - a and b. 

ASCII : American Standard Code for Information 

Interchange. An ASCII code is the number which 

represents a given character in the memory of the 

computer. 

ASSIGNMENT OPERATOR: The symbol = is 

the standard assignment operator. C also supports 

+=,-=,*=,/=,I= and so on. See relevant chapter on 

operators. 

BIT: The most elementary unit of memory. A bit 

can only store the values one or zero. 

BRACE: The symbols {and). 

BRACKET: The symbols ( and ). 

BUFFER: A buffer is an area of memory set aside 

for data which is in the process of being either 

transmitted or received. A buffer allows characters to 

build up somewhere if they are being received faster 

than they can be used, or being generated faster 

than they can be transmitted. 

BYTE: A convenient grouping of eight bits 

(corruption of 'By Eight'). The maximum unsigned 

value it can hold is 255. The minimum unsigned 

value is zero. The maximum signed value is 127, and 

the the minimum signed value is -128. 

CODE: Often used to mean 'program code', or a 

piece of program written in C. 

COMPILE TIME: This is the time during the 

execution of the compiler program, ie, when a 

source file is being translated into machine code . 



COMPOUND STATEMENT: Wherever a C 

statement can be given in a program, a 'compound 

statement' can given instead. This is a group of 

statements surrounded by braces. For example: 

printf (" ... "); 

for (x = 0; x <= 1; x++); 

CONTROL STRING: A string used in formatted 

input/output in order to specify the type of data 

which is being read or written . For example, '%d' 

would signal that an integer type is to be read or 

written . Control strings are mixed up with ordinary 

text and always begin with a '%' symbol. Illegal 

characters after the % are just printed. 

CRASH: A computer is said to have 'crashed' 

when it runs wildly out of control or just 'dies' 

because of a faulty program or hardware failure. The 

usual cause of crashing is faulty programming. Don't 

be surprised if your computer crashes regularly when 

programming with Ct 

DEN ARY: Number base 10 - our normal counting 

base . This is in contrast to binary or hexadecimal. It 

is sometimes called decimal, but this can be 

confused with other uses of the word. 

DIMENSION of an ARRAY: The number of 

storage places for one index of an array. So: 

int array[6]; 

would declare an array of dimension six. Arrays with 

two indicies are called 'two-dimensional' but this is a 

slightly different meaning, just to add to the 

confusion . A two-dimensional array: 

char array[B] [9]; 

GLOSSARY OF TERMS 

• 



C - A DABHAND GUIDE 

-----

would be called an array with dimensions eight by 

nine. 

DOS: Disc Operating System. 

DYADIC OPERATOR: An operator which is 

'infixed', ie, it operates between two objects like the 

multiplication symbol - a * b. See also unary 

operator. 

EXECUTION TIME: The time during which the 

user's program is running. 

EXECUTABLE FILE : A file which has been 

translated into machine code by a compiler. For 

example, program.x. 

FALSE: Opposite of true. It is applied to tests and 

decisions where comparisons are made. For example, 

(a == 0) is FALSE, if the variable a is not equal to 

zero. In C, false has the integer value zero (0). See 

also true. 

FIELD : A print field is a space into which 

something is written . Often a screen will be thought 

of as being divided up into fields or areas . Printf 

fields are defined in C using the % character in a 

control string. 

FORMAL PARAMETER: A temporary variable 

into which arguments are copied. Formal parameters 

are the names of function arguments inside the 

function definition . 

GARBAGE: Nonsense. Values which are spurious 

or random and do not have anything to do with a 

program, or don't have any meaning. 

GLOBAL: This means that something is valid 

everywhere. 

GLOBAL WHITE SPACE: A fancy name for the 

space which is outside, and in between, functions in 



a C program. For example, at the very top of the 

file, before the first main() function. This is where 

preprocessor symbols must be defined. 

HEAP: Another name used to describe a stack. The 

distinction is only for convenience, give or take 

some minor differences. See stack. 

HEXADECIMAL: Number base 16. 

IDENTIFIER: Any name which a programmer 

invents to label a variable or function. It identifies a 

C object. 

INDEX (of an array): A variable or a number which 

is used to access the different elements or pigeon 

holes in the array. 

INFIXED OPERATOR: An operator which is 

fixed between two values, like the addition, 

multiplication operators and so on - 2 + 3, a * b. 

INSIDE : A term used in this book to mean 

something which is enclosed by block braces { J. See 

outside. 

I/O: Short for input/output. 

LINKED LIST: A versatile kind of list which is 

made of data pieces and connections between the 

data. Each element knows which is the next element 

in the list because it has a record of the next item. A 

linked list is made up of pointers and structures in C. 

LINKER: A phase of a compiler which ties up all 

the loose ends, such as functions which have been 

called but not defined, and incorporates standard 

library code into programs and so on. 

LOCAL: This means that something is valid only 

within a limited area. It is the opposite of global. 

GLOSSARY OF TERMS 

• 



C - A DABHAND GUIDE 

II 

LOCAL MANUAL: An expression meaning the 

reference manual for a particular system. It is local 

because it does not apply for all computers or 

programs. 

LOCAL OPERA.TING SYSTEM: The operating 

system under which a program is running. It is local 

because it does not apply to all computers. 

NESTING: Objects are said to be nested when 

they are arranged one inside the other. For instance 

block braces are nested: 

Loops are often nested: 

for (a = l; a < 10; a++) 

for (b = l; b < 10; b++) 

{ 

do_something (); 

#include files can also nest if there are includes 

inside includes. A compiler might impose 

restrictions on how many times things can be 

nested. 

LV ALUES: Any object which can be on the left­

hand side of an assignment operator. It is the name 

of a variable. 

MEMORY MAP: A list of all the address locations 

of memory in the computer. 

• 



MEMORY MAPPED INPUT/OUTPUT: The 

registers of chips which make up a computer have to 

be addressable by the central processing unit (CPU), 

so they are often made into a part of the memory 

map of the computer. Some processors. can 

communicate more directly with I/O, or contain 

their own I/O interfaces already. 

OBJECT CODE: A file of machine code which is 

generated by a compiler. This is not usually 

executable, as it must be linked to standard library 

code in order to be complete. 

OCTAL: Number base 8 . 

OPERAND : The object acted upon by an 

operator. See operator. 

OPERATOR: An operator is something which 

takes one or more variables (called operands) and 

produces a new result from them. For example, &( ) 

is the address operator, it takes a single value (some 

variable), and its value is a pointer to that object. 

The + sign is also an operator (a binary or dyadic 

operator, because it has two operands) . It takes two 

variables or numbers and produces a result which is 

the sum of the two. 

OUTSIDE: A term used in this book which means 

not inside block braces { ) . This is important in 

discussing the scope of things. See inside. 

POINTER: The address or location of a storage 

area used in a program is called a pointer to the 

data . In C the operator &(variable) gives the address 

of an object, so that we can write: 

pointer= &(object) 

The * symbol is used to affect the contents of a data 

store when only a pointer to it is known: 

*pointer = 5 

GLOSSARY OF TERMS 



C - A DABHAND GUIDE 

• 

would set the contents of object to be five. The 

above is equivalent to: 

objec;t = 5; 

Note that C pointers are not the same for different 

kinds of data . A pointer to an integer is not the same 

as a pointer to a floating point number and so on. 

They can be converted with the cast operator ( 

however. (See relevant chapter for details.) 

REGISTER: Usually thought of as being a 

memory location inside a computer processor, which 

is used by the processor for working on data. See 

Chapter 24: Low-level Operations. 

RESERVED WORD: A word which C uses for a 

special purpose and so cannot be used as the name 

of a variable or function . 

RETURN: A function is said to return a value ifit 

hands back some value to the function which called 

it. In C there is no distinction between routines 

which return a value and those which do not. If no 

assignment is made in the calling function any 

return value is discarded . 

RUN-TIME: The time during which a compiled 

program is being executed or 'run'. It is held in 

distinction to 'compile time' . 

SCOPE: The part of a program in which a variable 

has meaning. When a local variable is declared inside 

block brackets { ) , it is only valid inside those 

brackets and any reference to it outside will result in 

an error at compile time. However, any variables 

declared outside block brackets { ) are allowed inside 

them too. If there is a clash of names, the either an 

error will be signalled or the local variable, ie, the 

one declared inside will take precedence . See 

Chapter 12 on scope . 



SOURCE CODE: A text file which contains the 

written program. All the printed examples in this 

book are examples of source code. 

STACK: A pile of information which is built up in 

a simple way. It owes its name to the familiar idea of 

a stack. The only operations that can be performed 

with a stack are to put a new item on the top or to 

take an item from the top. Each new item in a stack 

is called a 'stack frame' . A stack is commonly used 

by an operating system for storing 'local variables'. 

See also heap . 

STATEMENT: Any complete group of words 

ending with a semi-colon is called a statement. For 

example, printf (" .. "); or for (x=O; X<=l; x++ ). See 

also compound statement. 

STRUCTURE DIAGRAM: A diagram which 

solves a computer program. It shows the structure of 

the program by using a series of levels, zones and 

toolkits. 

SUBROUTINE: In C, all subroutines are called 

'functions'. A subroutine is a piece of program code 

which is called as a part ofa more major program. 

TEXT FILE: A file which contains only writing 

and numbers - letters of the alphabet, spaces, new 

lines and numbers. 

TOKEN: A number which is used to stand in place 

of a word. A token is often found by a 'hashing' or 

numbering function. 

TOOLKIT: A group of functions which work on a 

particular problem. A function in a toolkit will be 

used many times from many different places in a 

program. 

GLOSSARY OF TERMS 

• 



C - A DABHAND GUIDE 

• 

TRUE: The result of the comparison (a == 0) is 

true only if the variable a is zero. In C 'true' has an 

integer value which is any number except zero (0) . 

UNARY OPERATOR: An operator which returns 

a result from a single object. For example, the 

increment operator c++, or the address operator & 

c. 'sizeof' is also thought of as being a unary 

operator because it operates on a typename rather 

than a value. It is a compile time operator, however 

and it might be argued that it is really a function . 

VDU: Visual display unit. The monitor or screen of 

a computer. 

WHITE SPACE CHARACTERS: Characters 

which are not generally seen in a program such as 

spaces and carriage returns. White space means they 

are the 'white on a sheet of paper' ie, where no 

characters have been typed. The white space of a 

program can be thought of as the blank sheet of 

paper on to which a program is written. 

WIMP: Windows, icons, mice and pull-down 

menus . A type of operating system which uses 

windows with mouse control and menus. It is easier 

to use than a system where the user has to type every 

command. 

WINDOW: A rectangular box on the screen of a 

computer which behaves like an independent screen 

in its own right. Some computers have only one 

window on their screen. Many window systems are 

often accompanied by WIMP environments. 

ZONE: The main woe is the main program idea. 

Any other zone is an area of program which is 

necessary for it to work, but has no real relevance to 

the main idea. For instance it may be a long section 

to do with opening windows or setting up a system . 



Index 
I 

!=. .. 179 

#define ... 118 

#else ... 124 

#endif ... 124 

#error ... 124 

#if ... 123 

#ifndef ... 124 

#include ... 49,56,123 

#line ... 124 

#undef ... 123 

% ... 142,145,152,162 

%= ... 175 

& ... 105,106,129,335 



C - A DABHAND GUIDE 

&= .. . 175,336 

* ... 105,106,129,169 

*= ... 175 

+ ... 169 

++ ... 173,306 

++C ... 508 

+= ... 174 

-... 169 

- ... 173,306 

-= ... 174 

/ ... 169 

/= .. . 175 

«= ... 175,336 

< . .. 178 ,180 

« ... 335 

<= ... 178 

= .. . 85,168,303 

== ... 168,179 

>= ... 178 

»= ... 175,336 

> . .. 178,180 

» .. . 335 

? : ... 121 
11 = ... 175,336 
11 

••• 335 

_main() and main() ... 520 

A 
abs ... 122,291 

acos ... 292 

• 



Actual Parameter ... 98 

Address ... 133 

ADFS ... 576 

Algol... 35 

Amiga CON: ... 549,553 

Amiga Graphics ... 554 

Amiga ... 545 

AND .. . 178,338 

ANSI Standard ... 31,92 

Answering Machine ... 614 

Archimedes .. . 575 

argc ... 521 

argv ... 521 

argc, argv example ... 629 ,630 

Arithmetic .. . 169,170 

Array Bounds ... 508,511,512 

Array Index ... 230 

Array Limits ... 233 

Arrays and For Loops ... 235 ,241 

Arrays and Parameters ... 254 

Arrays and Pointers ... 252 

Arrays of Structures ... 397 

Arrays, Dimensions of ... 233,239 

Arrays, Hidden Operators and ... 307 

Arrays ... 229 

Arrays, Initialising ... 235,251 

Arrays, Strings and .. . 258,262 

Arthur ... 577 

ASCII ... 81,86,281 

asin .. . 292 

INDEX 

• 



C - A DABHAND GUIDE 

• 

Assigning Variables ... 85 

Assigning, Matching Without ... 159 

atan ... 292 

atan2 ... 293 

Atari ST .. . 563 

atof ... 288 

atoi ... 289 

atol... 289 

auto ... 89,91 

Automatic Variables ... 89 

B 
BASIC ... 21,22,35,131 

Batch File ... 24 

BBC Master ... 599 

Beep ... 82 

Binary Tree ... 426,482 

Bit Patterns ... 332 

Bits and Operators ... 334 

Black Box Data ... 390,415 

Black boxes ... 16,47,65 

Block ... 58 

Block Mode File Operations ... 366 

Blocks ... 112,113 

Bounds, Array ... 508,511,512 

Brace, Missing ... 504 

Braces, Curly .. . 56,58,112 

Brackets ... 56,171 

Break Key ... 45 

Breaking Out of Loops etc ... 71,223 



break ... 223 

c 
C++ ... 508 

Case, Lower ... 26,43,504 

Case, Upper ... 26,504 

Cast Operator ... 86,136,177,315 

Casting Structure Pointers ... 410 

ceil... 291 

char ... 77,82 

Character Classification, Summary of ... 539 

Characters .. . 81 

Characters and Single Quotes ... 81 

Characters, Conversion .. . 142,145 

Child Processes ... 594 

Choosing Variables .. . 85 

Classes, Storage ... 89 

close ... 374 

Closing Files ... 352 

Code, Object ... 51 

Commands ... 42,45 

Commands, Making .. . 521 

Comments ... 58,61 

Comparing Strings ... 289 

Comparisons and Logic ... 178 

Compilation Time ... 51 

Compilation, Phases of... 23 

Compiler Language .. . 16,21,23 

Compiler ... 23 

COMPLEMENT ... 338 

INDEX 

• 



C - A DABHAND GUIDE 

• 

Complex Numbers ... 455 

CON:, Amiga ... 549,553 

Conceptual Diagram ... 417 

Connecting Up Structures .. . 421,422 

const ... 78,316,326 

Constants ... 96,117,118,119,316 

continue ... 224 

Control Characters ... 81,148 

Control Sequence ... 32,148,150 

Control, Flow of ... 57,58,67 

Conversion Characters ... 142,145 

Conversion Specifiers, printf ... 541 

Conversion Specifiers, scanf ... 542 

cos ... 292 

cosh ... 293 

creat ... 374 

Cross Referencer, Identifier ... 482 

Cross Referencer, Variable ... 482 

ctype.h .. . 279 

Curly Braces ... 56,58,112 

D 
Daemons ... 611 

Data ... 75,315,389,415 

Data Handling, Statistical... 457 

Data Structure Diagram ... 417 

Data Structures ... 390,415,419,422 

Data Structures, Recursion and ... 438 

Data, Black Box ... 390,415 

Data, Maps of ... 127,131 



Debugging ... 503 

Decisions ... 183 

Declaration, Initialising During ... 80 

Declaration, Union ... 411 

Declarations .. . 27 ,58,75,78 ,90 

Declarations, struct .. . 392 

Declaring Parameters ... 94 

Device Names, Pseudo ... 41,345 

Devices, Files and ... 345 

Diagram, Conceptual. .. 417 

Diagram, Data Structure .. . 417 

Diagram, Structure ... 416,417 

Dimensions of Arrays ... 233,239 

Directories under Unix .. . 617, 629 

do .. while ... 36,213 

do .. while Loop .. . 213 

Dot ... 41 

double ... 77,84 

Draw ... 556 

Dynamical Structures ... 408,419 

E 
Editor .. . 46 

enum ... 78 ,315,318,323 

EOF ... 119 

EOR, XOR .. . 179,339 

Errors .. . 24,26,503 

Errors and scanf.. . 505 

Errors, File ... 366 

Errors, Mathematical... 295,298 

INDEX 

II 



C - A DAB HAND GUIDE 

• 

Errors, Run Time ... 507 

Errors, Tracing ... 514 

Example Programs ... 457 

Exec File .. . 24 

Executable File .. . 22,41 

Exit ... 72 

Expressions ... 170 

exp ... 291 

extern ... 89 

F 
fabs .. . 291 

Factorial... 437 

feof... 358 

ffiush .. . 370 

fgetc .. . 355 

fgets ... 357 

File Errors ... 366 

File Handles ... 349,372 

File Handling Functions, High Level... 348 

File Handling Functions, Low Level... 370 

File Operations, Block Mode ... 366 

File Pointers ... 349,372 

File Positions .. . 347 

File Switching ... 359 

File , Batch .. . 24 

File, Executable .. . 22,41 

File, Exec ... 24 

File, Header ... 41,49,50,51,535 

File, Source ... 21,41 



File ... 40,41 

FILE ... 317,345 

Files and Devices ... 345 

Files .. . 347 

Files, Closing ... 352 

Files, Opening ... 349 

Flags ... 333 

float ... 77,84 

floor ... 291 

Flow of Control... 57,58,67 

for ... 36,217 

for Loop ... 217,234 

For Loops, Arrays and .. . 235,241 

fork ... 613, 625 

fork() ... 611 

Formal Parameter ... 91,98 

Formatted Printing ... 32,33,35,141 

fPrintf ... 352 

fPutc ... 356 

fPuts ... 357 

fread ... 367 

free .. . 270,409 

fscanf ... 353 

fseek ... 368,376 

ftell .. . 368 

Function ... 55,57,58,65 

Functions ... 65,100,525 

Functions and The Stack ... 432 

Functions, Macro ... 120 

Functions, Mathematical... 290,293 

INDEX 

• 



C - A DABHAND GUIDE 

• 

Functions, Pointers to ... 525,527,531 

Functions, Recursive ... 429 

fwrite ... 367 

G 
Game of Life ... 242 

GEMVDI.. . 566 

getchar ... 140,165 

getc ... 355 

gets ... 140,165,275 

Global... llO 

Global Variables, Recursion and ... 442 

goto ... 71,543 

Graphics, Amiga .. . 554 

H 
Handles, File ... 349,372 

Header File ... 41,49,50,51,535 

Hidden Operators ... 301 

Hidden Operators and Arrays ... 307 

Hidden Operators and Strings ... 307 

High Level ... 16,348 

High Level File Handling Functions ... 348 

I/O Functions, Summary of ... 540 

I/O, String ... 275 

Identifier ... 65,66,75 

Identifier Cross Referencer ... 482 

if... 36,185 



if, Nested ... 193 

if..else ... 36,191,197 

if .. else, Stringing together ... 197 

Index, Array ... 230 

Indices ... 230 

Initialisation of Pointers ... 132 

Initialisation, String ... 260 

Initialising Arrays ... 235,251 

Initialising During Declaration ... 80 

Initialising Structures ... 407 

Input ... 50,139,445 

Integer .. . 77,83 

int ... 77,83 

Integration, Numerical... 298 

isalnum ... 281 

isalpha ... 280 

isascii ... 281 

iscntrl... 281 

isdigit ... 280 

isgraph ... 281 

islower ... 280 

ispunct ... 281 

isspace ... 281 

isupper ... 280 

isxdigit ... 280 

L 
Language, Compiler ... 16,21,23 

Level... 16,56,609 

Level, High ... 16,348 

INDEX 

• 



C - A DABHAND GUIDE 

• 

Level, Low ... 16,331 

Levels ... 434 

Libraries ... 31,49 

Library, Standard ... 49,51 

Life, Game of ... 242 

Line A Routines ... 566 

Linked List ... 424,457 

Linker ... 24 

Link ... 420 

Local... llO 

Locks ... 623 

loglO ... 291 

Logic, Comparisons and ... 178 

log ... 291 

long ... 77,83 

Loop, do .. while .. . 213 

Loop, for .. . 217,234 

Loop, while ... 208 

Loops ... 207 

Loops, Nested ... 225,241 

Low Level... 16,331 

Low Level File Handling Functions ... 370 

Low Level 1/0 .. . 163 

Low Level Operations ... 331 

Lower Case ... 26,43,504 

LPTR ... 41 

Lvalues .. . 169,170 



M 
Machine code ... 16,18,332 

Macro ... 31,120 

Macro Functions .. . 120 

Macros ... 117,120 

Macros with Parameters ... 120 

main(), _main() and ... 520 

Making Commands ... 521 

malloc ... 268,408,409 

Maps of Data ... 127,131 

Masks, Truth Tables and ... 338,340 

Master, BBC ... 599 

Matching Without Assigning ... 159 

math.h ... 51,279 

Mathematical Errors ... 295,298 

Mathematical Functions ... 290,293 

Maths Library ... 542 

Members, Structure ... 397 

Memory for Strings ... 266,267,269,273 

Menus ... 264 

Messages ... 333 

Missing Brace ... 504 

Missing Quote ... 505 

Missing Semi-colon ... 504 

Move ... 555 

MS-DOS ... 589 

N 
Names ... 65,66,75 

Nested if ... 193 

INDEX 

• 



C - A DABHAND GUIDE 

II 

Nested Loops ... 225,241 

Nesting ... 193,207,225 

Nesting Structures ... 401 

New Computers, Porting Programs to ... 516 

NOT ... 178,263 

NULL ... 119 

NULL byte ... 258,259 

Numerical Integration ... 298 

0 
Object code ... 22,41 

Object Code ... 51 

Octal.. . 82 

Opening Files ... 349 

open ... 372 

Operand ... 167 

Operating System ... 39 

Operation ... 168 

Operations, Low Level ... 331 

Operations, Shift ... 336 

Operator Precedence ... 172,180 

Operator Priority ... 171 

Operator, Cast ... 86,136,177,315 

Operator ... 167,169,301 

Operators, Bits and ... 334 

Operators, Hidden ... 301 

Operators, Summary of.. . 537 

Operators, Unary ... 168,172 

OR ... 179,339 

Output ... 50,139,445 



Outside ... 90,117 

p 

Parameter, Actual... 98 

Parameter, Formal... 91,98 

Parameters ... 93,94 

Parameters Value ... 95 

Parameters Variable ... 104 

Parameters, Arrays and ... 254 

Parameters, Declaring ... 94 

Parameters, Macros with ... 120 

Pascal... 26,35,55 

Password information ... 618 

passwd structure ... 618 

pwd .h ... 615 

PC ... 587 

PC Sound ... 592 

PEEK. .. 131 

Phases of Compilation ... 23 

Poem ... 33 

Pointer ... 36,127,440,441,525 

Pointers ... 127,131 

Pointers to Functions ... 525,527,531 

Pointers to Structures ... 403,419 

Pointers, Arrays and ... 252 

Pointers, File ... 349 ,372 

Pointers, Initialisation of... 132 

Pointers, Strings, Arrays and ... 258 

POKE ... 131 

Porting Programs to New Computers ... 516 

INDEX 



C - A DABHAND GUIDE 

• 

Positions, File ... 347 

pow ... 292 

Pre-Processor ... 22,117,534 

Precedence, Operator ... 172,180 

Prime Number Generator ... 219,236 

printf... 32,33,35,141 

printf Conversion Specifiers ... 541 

Printing, Formatted ... 32,33,35,141 

Priority, Operator ... 171 

PRN ... 41 

Problems, Solving ... 65,609 

Procedure ... 55,65 

Program ... 21 

Program Structure ... 53 ,609 

PRT. .. 41 

Pseudo Device Names ... 41 ,345 

putchar ... 140,165 

putc ... 356 

puts ... 140,165,275 

Q 
Quadruples ... 23,41 

Quote, Missing ... 505 

R 
read ... 375 

readdir ... 617,629 

Recursion ... 429 

Recursion and Data Structures .. . 438 

Recursion and Global Variables ... 442 



Recursive Functions ... 429 

Redundant Keywords ... 91 

Register ... 89 

Registers ... 333 

remove, unlink,. .. 377 

rename ... 378 

Reserved Words ... 29 

Returning Values ... 69,104 

Return ... 71 

rewind ... 370 

Root ... 420 

Run Time Errors ... S07 

s 
scanf... 36,132,1S2,1SS,161 

scanf Conversion Specifiers ... S42 

scanf, Errors and ... SOS 

scanf, Taming ... 164 

Scope ... 109,llS 

Scope and Structures ... 394 

Self Reference ... 430 

Self Similarity ... 430,431,43S 

Semi-Colon ... S7 

Semi-colon, Missing ... S04 

Sequence, Control... 32,148,lSO 

SetAPen ... SSS 

SetOPen ... SSS 

Shakespeare ... 180 

Shift Operations ... 336 

short ... 77,83 

INDEX 

• 



C - A DABHAND GUIDE 

• 

Signals ... 610 

signal ... 613 

signal.h ... 615 

signed ... 78,89 

Single Quotes, Characters and ... 81 

sin ... 292 

sinh ... 293 

sizeof ... 409 

Skipgarb ... 164,209 

sleep ... 617 

Solving Problems ... 65,609 

Sound, PC ... 592 

Source code ... 21 

Source File ... 21,41 

Special Characters .. . 81, 148 

sprintf .. . 276,610 

sqrt ... 292 

sscanf ... 276 

Stack, Functions and The ... 432 

Stack ... 432 

Standard 1/0 ... 139 

Standard Library ... 49,51 

Standard, ANSI.. . 31,92 

Statements ... 58 

static ... 89 

Static Structures ... 407 

Statistical Data Handling ... 457 

stderr .. . 140 

stdin ... 139 

stdio.h ... 50,139,279 



stdout .. . 139 

Storage Classes ... 89 

strcat ... 285 

strcmp .. . 271,287 

strcpy .. . 2 71,28 7 

String I/O ... 275 

String Initialisation ... 260 

String Manipulation ... 285 

string.h ... 279 

Stringing together if..else ... 197 

Strings and Arrays ... 258,262 

Strings and Declarations .. . 258 

Strings, Arrays and Pointers ... 258 

Strings, Comparing ... 289 

Strings, Hidden Operators and ... 307 

Strings ... 257 

Strings, Memory for. .. 266,267,269,273 

strlen .. . 287 

strncat ... 288 

strncmp ... 288 

strncpy .. . 288 

struct ... 36,316,327,389,391 

struct Declarations ... 392 

Structure Diagram ... 416,417 

Structure in Programs ... 53,609 

Structure Members ... 397 

Structure Pointers, Casting ... 410 

Structures, Connecting Up ... 421,422 

Structures, Data ... 390,415,419,422 

Structures, Dynamical... 408,419 

INDEX 

• 



C - A DABHAND GUIDE 

• 

Structures, Initialising ... 407 

Structures, Nesting ... 401 

Structures, Pointers to ... 403,419 

Structures, Scope and ... 394 

Structures, Static ... 407 

Style ... 53,62,114,310,609 

Subroutine ... 55,65 

Summary of Character Classification ... 5 39 

Summary ofl/O Functions .. . 540 

Summary of Operators ... 537 

switch .. . 36,200 

System, Operating .. . 39 

T 
Taming scanf... 164 

tan ... 292 

tanh ... 293 

Time, Compilation ... 51 

toascii ... 282 

tolower. .. 282 

Toolkits ... 445 

TOS ... 426 

toupper ... 281 

Tracing Errors ... 514 

Truth Tables and Masks ... 338,340 

Type Mismatch ... 505,506 

typedef ... 328 

Types ... 72,75,81,86,136,177,315 



u 
Unary Operators ... 168,172 

ungetc ... 356 union ... 316,328,411 

Union Declaration ... 411 

Unions and Enumerated Data ... 412 

unlink, remove ... 377 

unsigned ... 78 

Upper Case ... 26,504 

v 
Value, Parameters ... 95 

Values, Returning ... 69,104 

Variable Cross Referencer ... 482 

Variable, Parameters ... 104 

Variables ... 58,76,79,85,110 

Variables, Assigning ... 85 

Variables, Automatic ... 89 

Variables, Choosing ... 85 

Variables, Zeroing ... 90 

VDI, GEM ... 566 

void ... 78,315,325 

volatile ... 78,316,326 

w 
Wells ... 434 

while ... 36,208 

while Loop ... 208 

Wild cards ... 616 

WIMP ... 51,554 

Workstation ... 567 

INDEX 

• 



C - A DABHAND GUIDE 

• 

write ... 376 

x 
XOR EOR ... 179,339 

y 

yes function ... 204 

z 
Zeroing Variables ... 90 

I=. .. 175,336 

- ... 335 



Programs Disc 

Please turn over for details on 

Program Disc prices and pull out 

order form. 



• 

Programs Disc 

Prices 
Acom Archimedes 

Commodore Amiga 

IBM/Amstrad PC 5.25 11 (2 discs) 

IBM/Amstrad PC 3.5 11 

BBC B/Master 5.25 11 

BBC B/Master 3.5 11 

£9.95 

£9.95 

£9.95 

£9.95 

£7.95 

£9.95 

To order any of the above discs which accompany 

this book, please fill out the order form opposite and 

post to the address given below. 

Dabs Press, PO Box 48, Prestwich, Manchester 
M25 7HF 



I 
I 
I 
I 
I 
I 
I 
I 
I 

DABS PRESS Order Form 

Please send me a programs disc to accompany C: A 

Dabhand Guide. I would like the following version 

(PLEASE TICK AS APPROPRIATE) 

Acorn Archimedes D 
Commodore Amiga D 
IBM/Amstrad PC 5.25 11 (2 discs) D 
IBM/Amstrad PC 3.5 11 D 
BBC B/Master 5.25 11 D 
BBC B/Master 3.5 11 D 
I enclose a cheque/official order Number: 

or 

My Access/Visa No. is 

I I I I 11 I I I 11 I I .......... I I___.__.'--' 
Expires OJ OJ 
Price includes VAT and postage in the UK. Foreign 

readers, please pay the same amount as there is no 

VAT, but additional postage costs. 

Name .................................................................... . 

Address .................................................................. . 

• 



II 



NOTES 

II 



• 

' ..... , 




